Yıldız

Kısaca: Yıldız yoğun ve ışık saçan bir plazma küresidir. Biraraya toplanan yıldızların oluşturduğu gökadalar görünür evrenin hâkimidir. Günışığı dahil olmak üzere Dünya üzerindeki erkenin (enerji) çoğunun kaynağı, bize en yakın yıldız olan Güneştir. Diğer yıldızlar, Güneş’in ışığı altında kalmadıkları zaman yani geceleri gökyüzünde görünürler. Yıldızların parlamasının nedeni çekirdeklerinde meydana gelen çekirdek kaynaşması (füzyon) tepkimelerinde açığa çıkan erkenin yıldızın içinden geçtikten sonra dış ...devamı ☟

yıldız
Yıldız



Boğa takımyıldızında yer alan Ülker yıldız kümesi bir açık yıldız kümesidir. fotoğraf: NASA
Boğa takımyıldızında yer alan Ülker yıldız kümesi bir açık yıldız kümesidir. fotoğraf: NASA
Yıldız yoğun ve ışık saçan bir plazma küresidir. Biraraya toplanan yıldızların oluşturduğu gökadalar görünür evrenin hakimidir. Günışığı dahil olmak üzere Dünya üzerindeki erkenin (enerji) çoğunun kaynağı, bize en yakın yıldız olan Güneştir. Diğer yıldızlar, Güneş’in ışığı altında kalmadıkları zaman yani geceleri gökyüzünde görünürler. Yıldızların parlamasının nedeni çekirdeklerinde meydana gelen çekirdek kaynaşması (füzyon) tepkimelerinde açığa çıkan erkenin yıldızın içinden geçtikten sonra dış uzaya ışıma (radyasyon) ile yayılmasıdır. Yıldızlar olmasaydı, ne yaşam ne de öğelerin (element) büyük bir kısmı varolabilirdi.

Gökbilimciler bir yıldızın tayfını, parlaklığını ve uzaydaki hareketini gözlemleyerek o yıldızın kütlesi, yaşı, kimyasal bileşimi ve bunun gibi bir çok özelliğini belirleyebilirler. Bir yıldızın toplam kütlesi, yıldızın gelişiminin ve sonunun ana belirleyicisidir. Bir yıldızın gelişim süreci içinde bulunduğu aşamaya göre çapı, dönüşü, hareketi ve sıcaklığı belirlenir. Sıcaklık ve parlaklık durumuna göre işaretlendikleri Hertzsprung-Russell diagramı (H-R diagramı), yıldızların güncel yaşını ve gelişim sürecindeki aşamasını belirlemek için kullanılır.

Yıldız gelişiminin ilk halkası, hidrojen, bir miktar helyum ve çok az miktarda daha ağır öğelerden oluşan ve içe doğru çökmeye başlayan bir madde bulutudur. Yıldız çekirdeği yeteri kadar yoğunlaştıktan sonra içinde bulunan hidrojenin bir kısmı sürekli olarak nükleer çekirdek kaynaşması tepkimesiyle helyuma çevrilir. Yıldızın geri kalan kısmı, açığa çıkan erkeyi, ışıma ve ısıyayım (konveksiyon) birleşimiyle çekirdekten uzağa taşır. Bu süreçler yıldızın kendi içine doğru çökmesini engeller ve erke, yıldız yüzeyinde bir yıldız rüzgarı yaratarak dış uzaya doğru ışıma yoluyla yayılır.

Çekirdekteki hidrojen yakıtı bittikten sonra, en azından Güneş’in kütlesinin beşte ikisi kadar bir kütleye sahip olan yıldız genişleyerek, daha ağır olan öğeler çekirdekte ya da çekirdeğin etrafında kabuk halinde kaynaşarak kırmızı dev haline gelir. Daha sonra maddenin bir kısmı yıldızlararası ortama salınarak, ağır öğelerin daha yoğun olacağı yeni bir yıldız nesli yaratacak şekle dönüşür.

İki ya da daha fazla yıldızdan oluşan sistemlerde birbirine kütleçekim gücüyle bağlanmış ve genellikle birbirinin çevresinde düzenli yörüngelerde dönen yıldızlar bulunur. Birbirine çok yakın bir yörünge izleyen yıldızların kütleçekimgücü ile etkileşimlerinin evrimsel gelişimlerinde önemli etkisi vardır.

Gözlem tarihçesi

Yıldızlar her kültürde önemli bir yer tutar. Dinsel tapınmalarda ve yön bulmada yıldızlar kullanılmıştır. Dünyanın hemen hemen her yerinde kullanılan Gregoriyen takvimi, en yakın yıldız olan Güneş’e göre dönme ekseninin açısını temel alan bir güneş takvimidir.

Tycho Brahe gibi ilk gökbilimciler gece gökyüzündeki yeni yıldızları tanımlayıp gökyüzünün değişmez olduğunu önerdi. 1584 yılında Giordano Bruno diğer yıldızların aslında diğer güneşler olduğunu, onların yörüngesinde dönen başka gezegenler olabileceğini ve bir kısmının Dünya’ya benzeyebileceğini önerdi. Bu düşünce daha önceden antik Yunan düşünürler Demokritos ve Epikuros tarafından dile getirilmiştir. Sonraki yüzyılda yıldızların uzak güneşler olduğu görüşü gökbilimciler arasında ortak kabul gören bir düşünce olmuştur. Bu yıldızların güneş sistemi üzerinde neden çekimsel bir etki göstermediğini açıklamak için Isaac Newton ve ilahiyatçı Richard Bentley öne sürülen düşüncelerden yararlanarak yıldızların her yönde eşit olarak dağıldığını önerdiler.

İtalyan gökbilimci Geminiano Montanari 1667 yılında Algol yıldızının parlaklığındaki değişimleri gözlemleyerek kaydetti. Edmond Halley, yakınımızda bulunan bir çift "duran" yıldızın özdevim hareketinin ilk ölçümlerini yayımlayarak, bu yıldızların antik Yunan gökbilimciler Batlamyus ve Hipparkos zamanından beri konumlarını değiştirdiğini kanıtlamıştır. Bir yıldıza olan uzaklığın doğrudan ölçümü ilk olarak 61 Cygni yıldızı için ıraklık açısı yöntemi kullanılarak Friedrich Bessel tarafından 1838 yılında yapılmıştır. Iraklık açısı ölçümleri gökyüzündeki yıldızların birbirlerine olan engin uzaklıkları göstermiştir.

Gökyüzündeki yıldızların dağılımını keşfetmeye karar veren ilk gökbilimci William Herschel’dir. 1780’lerde bir dizi ölçü aygıtı yardımıyla 600 yönde bakış doğrultusu boyunca gözlemlediği yıldızları saydı. Bu çalışmayla yıldız sayısının gökyüzünde Samanyolu’nun merkezine doğru gittikçe arttığı sonucuna ulaşmıştır. Aynı çalışmayı güney yarımkürede tekrarlayan oğlu John Herschel de aynı yöndeki artışı tespit etmiştir. William Herschel diğer başarılarının ötesinde, bazı yıldızların yalnızca aynı bakış doğrultusunda yer almalarının yanısıra çiftyıldız sistemi oluşturan fiziksel eşler olduğunu bulmasıyla da tanınır.

Joseph von Fraunhofer ve Angelo Secchi yıldız tayfölçümünün öncüleridir. Sirius gibi yıldızların tayfını Güneş ile kıyaslayarak soğurma çizgilerinin (yıldız ışığı tayfının atmosferden geçerken belli frekanslarda soğurumu nedeniyle oluşan koyu çizgiler) sayı ve kuvvetlerindeki farklılıkları buldular. 1865 yılında Secchi yıldızları tayf tiplerine göre sınıflamaya başladı. Ancak günümüzde kullanılan yıldız sınıflandırması Annie J. Cannon tarafından 1900’lerde geliştirilmiştir.

Çiftyıldızların gözlemlenmesi 19. yüzyılda giderek artan bir önem kazanmıştır. 1834 yılında Friedrich Bessel, Sirius yıldızının özdevim hareketindeki değişiklikleri gözlemleyerek görünmeyen bir eş yıldızın varolduğu sonucuna vardı. Edward Pickering 1899 yılında ilk olarak tayf üzerinde çiftyıldızı bulduğunda, Mizar yıldızının 104 günlük periyotlarda ortaya çıkan tayf çizgilerindeki periyodik ayrılmayı gözlemliyordu. William Struve ve S. W. Burnham gibi gökbilimcilerin birçok çiftyıldız sistemini gözlemlerinin detayları yörünge özelliklerinin hesaplanmasıyla yıldızların kütlelerinin belirlenmesine olanak sağlamıştır. Teleskop ile yapılan gözlemlerden çiftyıldızların yörüngelerinin hesaplanması problemi ilk olarak Felix Savary tarafından 1827’de çözülmüştür.

Yirminci yüzyılda yıldızların bilimsel incelemesi alanında hızlı gelişmeler yaşandı. Fotoğraf önemli bir astronomik araç oldu. Karl Schwarzschild bir yıldızın renginin ve dolayısıyla sıcaklığının görünen kadir derecesi ile fotoğrafik kadir derecesinin karşılaştırılması sonucunda belirlenebileceğini buldu. Fotoelektrik fotometrenin geliştirilmesi birçok dalga boyu aralığında çok hassas kadir ölçümüne olanak verdi. 1921 yılında Hooker teleskobunda girişimölçer kullanan Albert A. Michelson yıldız çapının ilk ölçümlerini yapmıştır.

Yirminci yüzyılın başlarında yıldızların fiziksel temeli üzerine önemli çalışmalar yapılmıştır. 1913 yılında geliştirilen Hertzsprung-Russell diyagramı, yıldızların gökfiziği üzerine çalışmaların ilerlemesini sağlamıştır. Yıldızların içini ve evrimini açıklayacak başarılı modeller geliştirilmiştir. Nicemler doğabilimindeki (kuantum fiziği) gelişmelerle birlikte yıldızışığının tayfları başarı ile açıklanabilmiştir. Bu sayede yıldızların gazyuvarının kimyasal bileşimi de belirlenebilmiştir.

Yıldızların adlandırılması

Takımyıldız kavramının Babilliler döneminde varolduğu bilinmektedir. Eski gökyüzü gözlemcileri yıldızların belirgin düzenlerinin bir resim oluşturduğunu hayal etmiş ve bunu da kendi mitleriyle ve doğada gördükleriyle özdeşleştirmişlerdir. Tutulum (ekliptik) çemberi üzerinde yer alan on iki takımyıldız astrolojinin temelini oluşturmuştur. Belirgin olan birçok yıldıza da genelde Arapça ya da Latince isimler verilmiştir.

Takımyıldızların bazılarının ve Güneş’in kendi mitleri bulunur. Bunların ölülerin ruhu ya da tanrılar oldukları düşünülürdü. Örneğin Algol yıldızının Gorgon Medusa’nın gözünü temsil ettiğine inanılırdı.

Eski Yunan dininde, sonradan gezegen olarak tanımlanan bazı "yıldızlar" önemli tanrıları temsil ederdi. Gezegenlerin adı da bu tanrılardan gelir: Merkür, Venüs, Mars, Jüpiter ve Satürn. (Uranüs ve Neptün de Yunan ve Roma tanrılarıdır, ancak her ikisi de eski çağlarda düşük parlaklıkları yüzünden bilinmiyordu. Bu gezegenlerin isimleri daha sonraki gökbilimciler tarafından verilmiştir.

1600’lerde takımyıldızların isimleri gökyüzünün o bölgesindeki yıldızları adlandırmak için kullanılıyordu. Alman gökbilimci Johann Bayer’in bir dizi yıldız haritası yaratarak her takımyıldızdaki yıldızı Yunan harfleriyle tanımlamasıyla Bayer tanımlaması oluşmuştur. Daha sonraları İngiliz gökbilimci John Flamsteed’in kullandığı rakamlardan oluşan sisteme de Flamsteed tanımlaması adı verilmiştir. Yıldız katalogları çıktıktan sonra da birçok ek tanımlama sistemi hazırlanmıştır.

Yıldızları ve diğer gökcisimlerini adlandırma konusunda bilimsel toplulukta tek yetkili kurum Uluslararası Astronomi Birliği’dir ("International Astronomical Union - IAU"). Bazı özel şirketler yıldızlara isim sattıklarını iddia eder ancak bunlar ne bilim topluluğu tarafından tanınır ne de kullanılır. Gökbilim ile ilgilenenler bu tip davranışları, yıldızların adlandırılma prosedürünü bilmeyen insanları hedef seçen bir tür dolandırıcılık olarak görür.

Ölçüm birimleri

Yıldız değişkenlerinin çoğu MKS ölçüm sistemi ile belirtilse de bazen cgs ölçüm sistemi de kullanılır (örneğin parlaklığın erg/saniye olarak belirtilmesi gibi.) Kütle, parlaklık, ve yarıçap genel olarak Güneş’in özelliklerinin temel alındığı birimlerle ifade edilir:

Dev bir yıldızın yarıçapı ya da bir çiftyıldız sisteminin ana ekseni gibi büyük uzunluklar genellikle astronomik birim (AU) ile belirtilir. Bir AU yaklaşık olarak Dünya ile Güneş arasındaki ortalama uzaklığa eşittir.

Oluşum ve gelişim

Yıldızlar, uzayda bulunan yüksek yoğunlukta (yine de dünya üzerindeki bir vakum odasından daha az yoğun olan) geniş bölgelerden oluşan özdeciksel (moleküler) bulutların içinde oluşur. Bu bulutlar çoğunlukla hidrojenden ve % 23–28 helyum ile az miktarda daha ağır öğelerden ibarettir. İçinde yıldız oluşan bu tür bir bulutsuya örnek Orion bulutsusudur. Bu bulutlardan büyük yıldızlar oluştukça, içinde bulundukları bulutları güçlü bir şekilde ışıklandırıp yükünleştirirler (iyonlaştırırlar) ve bir H II bölgesi yaratırlar.

Önyıldız oluşumu

Bir yıldızın oluşumu, bir özdeciksel bulutun içinde oluşan ve sıklıkla bir üstnovaın (büyük yıldız patlamaları) ya da iki gökadanın çarpışmasından oluşan şok dalgalarının tetiklediği kütleçekimsel bir kararsızlık ile başlar. Jeans Kararsızlığı kriterlerini sağlayacak kadar bir madde yoğunluğuna erişen bölge kendi kütleçekimsel kuvveti altında çökmeye başlar.

Bulut çöktükçe, Bok yuvarı adı verilen yoğun toz ve gazdan oluşan ayrık kümelenmeler oluşur. Bunların içinde 50 güneş kütlesine kadar madde bulunabilir. Yuvar çöktükçe ve yoğunluk arttıkça kütleçekimsel erke ısıya dönüşür ve sıcaklık artar. Önyıldız bulutu hidrostatik denge durumunda dengeli bir duruma yaklaştığında, bulutun merkezinde bir önyıldız oluşur. Bu ana dizi öncesi yıldızlar genelde bir öngezegen diskiyle çevrelenmiştir. Kütleçekimsel büzülme dönemi 10–15 milyon yıl kadar sürer.

İki güneş kütlesinden az kütleye sahip genç yıldızlara T Tauri yıldızı, daha yüksek kütleye sahip olan yıldızlara da Herbig Ae/Be yıldızları denir. Bu yenidoğan yıldızlar dönme eksenleri boyunca gaz fışkırtır ve Herbig-Haro nesnesi denen küçük bulutçuklar oluşturur.

Ana dizi

Yıldızlar yaşam sürelerinin %90’ında çekirdek yakınında yüksek sıcaklık ve yüksek basınçlı çekirdek kaynaşması tepkimeleriyle hidrojeni helyuma çevirir. Bu tür yıldızların ana dizide olduğu söylenir ve cüce yıldız diye adlandırılırlar. Ana dizinin başlangıcından itibaren yıldız çekirdeğindeki helyum oranı düzenli olarak artar ve dolayısıyla da çekirdekteki çekirdek kaynaşması tepkimesini istenen hızda tutabilmek için yıldızın sıcaklığı ve parlaklığı yavaşça artacaktır. Örneğin yaklaşık 4,6 milyar yıl önce ana diziye giren Güneş’in o zamandan beri parlaklığının %40 arttığı tahmin edilmektedir.

Her yıldız sürekli olarak gazın uzaya akmasına neden olan bir yıldız rüzgarı üretir. Yıldızların çoğu için kaybedilen kütle miktarı kayda değer değildir. Güneş her yıl 10−14 güneş kütlesi kadar ya da tüm hayatı boyunca kütlesinin %0,01’i kadar bir kütle kaybeder. Ancak çok büyük yıldızlar gelişimlerini önemli derecede etkileyecek olan 10−7 ile 10−5 güneş kütlesi arasında madde kaybeder. 50 güneş kütlesinden daha büyük bir kütle ile başlayan yıldızlar ana dizide kaldıkları sürece toplam kütlelerinin yarısını kaybedebilir.

Bir yıldızın ana dizide bulunacağı süreyi yakılacak yakıtın miktarı ve yanma hızı, başka bir deyişle başlangıçtaki kütlesi ve parlaklığı belirler. Güneş için bu sürenin yaklaşık 1010 yıl olduğu tahmin edilmektedir. Büyük yıldızlar yakıtlarını çok hızlı yakarlar ve ömürleri kısa olur. Kırmızı cüce adı verilen küçük yıldızlar yakıtlarını çok yavaş yakar ve on ile yüz milyar yıl arasında yaşamlarını sürdürürler. Yaşamlarının sonuna doğru gittikçe parlaklıklarını kaybeder ve kara cüce haline dönerler. Böyle yıldızların yaşam süreleri evrenin şimdiki yaşından (13,7 milyar yıl) daha büyük olduğu için kara cücelerin varolması henüz beklenmemektedir.

Kütlenin yanı sıra helyumdan daha ağır öğelerin miktarı da yıldızların gelişiminde önemli rol oynar. Gökbilimde helyumdan ağır öğelerin tamamı "metal" olarak değerlendirilir ve bu öğelerin kimyasal derişimine metallik denir. Yıldızın metalliği, yakıtını yakacağı süreyi etkiler ve mıknatıssal alanların oluşumunu kontrol eder. ve yıldız rüzgarının gücünü değiştirir. Daha yaşlı öbek II yıldızlar oluştukları özdeciksel bulutların bileşimi nedeniyle daha genç olan öbek I yıldızlara göre önemli oranda az metalliğe sahiptirler. Bu bulutlar zaman geçip yaşlı yıldızlar öldükçe gazyuvarlarının bir kısmından gelen ağır metallerle zenginleşmiştir.

Ana dizi ötesi

En azından beşte iki güneş kütlesine sahip olan yıldızlar çekirdeklerindeki hidrojeni tükettiklerinde dış katmanları genişler ve soğuyarak bir kırmızı dev oluşturur. Yaklaşık 5 milyar yıl sonra Güneş kırmızı dev olduğunda o kadar büyük olacak ki Merkür’ü ve büyük olasılıkla Venüs’ü de içine alarak yokedecektir. Kurulan modellemelere göre Güneş’in Dünya’nın şu anki yörüngesinin (1 astronomik birim, ya da AU) %99’u kadar genişleyeceği tahmin edilir. Ancak o zamana kadar Güneş’in kütlesinin azalması nedeniyle Dünya’nın yörüngesi 1,7 AU’ya çıkacaktır ve böylece güneşin içinde kalmaktan kurtulacaktır. Ancak Güneş’in parlaklığı bir kaç bin katına çıkarken Dünya üzerinde ne okyanus ne de havayuvar (atmosfer) kalacaktır.

Kırmızı devin çekirdeğini çevreleyen kabuk tarzındaki katmanda hidrojen çekirdek kaynaşması devam eder. En sonunda çekirdek helyum çekirdek kaynaşmasını başlatacak kadar sıkışır ve yıldızın yarıçapı azalırken yüzey sıcaklığı artar.

Yıldız, çekirdeğindeki helyumu da harcadıktan sonra çekirdek kaynaşması karbon ve oksijenden oluşan ve sıcak çekirdeğin etrafında yer alan kabukta devam eder. Yıldız en baştaki kırmızı dev haline benzer bir gelişim izler ancak bu sefer yüzey sıcaklığı daha yüksektir.

Büyük yıldızlar

Dokuz güneş kütlesinden daha fazla kütleye sahip olan yıldızlar helyum yaktıkları aşamada genişleyerek kırmızı üstdev olur. Çekirdekteki bu yakıt da bittikten sonra helyumdan daha ağır öğelerin çekirdek kaynaşmasına devam eder. Sıcaklık ve basınç karbon çekirdek kaynaşmasına yetene kadar çekirdek küçülür. Bu süreç, oksijen, neon, silikon ve kükürtün yakılmasıyla devam eder. Yıldızın yaşamının sonuna doğru yıldızın içindeki soğan katmanları gibi kabuklarda çekirdek kaynaşması gerçekleşebilir. Her kabukta farklı bir öğe çekirdek kaynaşmasına uğrar. En dışta hidrojen, içeri doğru helyum ve sonra ağır öğeler diye devam eder.

Son aşamaya, yıldız demir üretmeye başlayınca ulaşılır. Demir öğeciklerinin (atom) çekirdeği diğer ağır öğelerin öğecik çekirdeklerinden daha sıkıca bağlandığı için, çekirdek kaynaşmasına uğradıktan sonra erke açığa çıkarmazlar, dolayısıyla bu süreç erke tüketir. Aynı şekilde daha hafif öğelerin öğecik çekirdeklerinden daha sıkı bağlandığından bölünüm (fisyon) ile de erke açığa çıkmaz. Görece yaşlı ve çok büyük yıldızların merkezinde büyük ve eylemsiz bir demir çekirdeği toplanır. Daha ağır öğeler yıldızın yüzeyine çıkarak Wolf-Rayet yıldızı denen nesnelere dönüşür. Bu yıldızların dış gazyuvarının kaçtığı yoğun bir yıldız rüzgarı bulunur.

Çöküş

Gelişiminin sonunda, ortalama büyüklükte bir yıldız artık dış katmanlarını kaybederek bir gezegence bulutsuya dönüşür. Eğer dış gazyuvarı döküldükten sonra kalan kütle 1,4 güneş kütlesinden az ise görece oldukça küçük bir nesne (yaklaşık Dünya kadar) haline gelene kadar küçülür. Daha fazla sıkışmanın oluşması için yeterince büyük olmayan bu yıldızlara beyaz cüce denir. Her ne kadar yıldızlar plazma yuvarları olarak tanımlansalar da beyaz cücenin içindeki eksicik (elektron) dejenere madde artık plazma değildir. Beyaz cüceler oldukça uzun zaman sonra kara cücelere dönüşeceklerdir.
: yaklaşık olarak 1050 AD yılında ilk olarak gözlemlenen bir üstnovanın kalıntıları.]


Daha büyük yıldızlarda demir çekirdek artık kendi kütlesini destekleyemeyecek kadar, yani 1,4 güneş kütlesinden daha fazla büyüyene kadar çekirdek kaynaşması devam edir. Çekirdeğin içindeki eksicikler (elektron) önelciklere (proton) yönlendirilince ve ters beta parçalanması ya da eksicik yakalanması (elektron yakalanması) ile patlayıp ılıncık (nötron) ve nötrinolar oluşturunca çekirdek birdenbire çöker. Bu çökmenin oluşturduğu şok dalgaları yıldızın geri kalanının bir üstnova olarak patlar. Üstnovalar o kadar parlaktır ki kısa süre içinde bulunduğu gökadanın tamamından daha parlaktır. Samanyolunda oluştuklarında, tarih boyunca daha önce yıldız görülemeyen yerlerde ortaya çıkan "yeni yıldızlar" olarak gözlemlenmişlerdir.

Yıldızın maddesinin çoğu, üstnova patlamasıyla uzaya kaçar ve Yengeç Bulutsusu gibi bulutsuları oluşturur.) Geri kalan bir ılıncık yıldızı (nötron yıldızı) haline gelir (kendilerini bazen atarca (pulsar) ya da X ışını patlaması şeklinde gösterir) ya da dört güneş kütlesine eşdeğer bir kalıntı bırakacak kadar büyük bir yıldız ise karadelik olur. Bir ılıncık yıldızında madde, ılıncık (nötron) dejenere madde denilen halde bulunur ve çekirdekte de QCD madde denen daha da ekzotik bir dejenere madde bulunur. Karadeliğin içindeki maddenin hali henüz anlaşılamamıştır.

Ölen yıldızların kaçan dış katmanları yeni yıldız oluşumunda kullanılabilecek ağır öğeleri de içerir. Bu ağır öğeler kayalık gezegenlerin oluşumuna izin verir. Üstnovalardan ve yıldız rüzgarlarından çıkan akış, yıldızlararası ortamın şekilllendirilmesinde önemli rol oynar.

Yaygınlık

Yıldızların çoğunluğunun kütleçekimi ile birbirine bağlı çoklu yıldız sistemlerinde çiftyıldızları oluşturduğu çok uzun zamandır kabul görmüş bir varsayımdır. Bu özellikle çok büyük olan O ve B sınıfı yıldızlar için özellikle doğrudur ve %80’i çoklu sistemdir. Ancak daha küçük yıldızlarda tek yıldız sistemlerinin oranı artar; kırmızı cücelerin yalnızca %25’inin bir eşi olduğu bilinmektedir. Tüm yıldızların %85’i kırmızı cüce olduğuna göre Samanyolu’ndaki yıldızları çoğu doğuştan tektirler.

Daha geniş kümelere yıldız kümesi denir. Bunlar bir kaç yıldızlık yıldız topluluklarından yüzlerce, binlerce yıldızdan oluşan devasa küresel kümelere kadar sıralanırlar.

Yıldızlar evrende düzenli bir şekilde dağılmamış ve normalde yıldızlararası gaz ve tozla birlikte gökadalarda toplanmışlardır. Sıradan bir gökada içinde yüzlerce milyar yıldız bulunur ve gözlemlenebilen evrende 100 milyardan (1011) daha fazla gökada vardır. Genelde yıldızların sadece gökadalarda olduğuna inanılsa da gökadalararası yıldızlar da bulunmuştur.

Gökbilimciler bilinen evrende en azından 70 sekstilyon (7×1022) yıldız olduğunu tahmin etmektedir. Bu Samanyolumuzda bulunan 300 milyar yıldızın 230 milyar katıdır.

Güneş’ten sonra Dünya’ya en yakın yıldız 39,9 trilyon (1012) kilometre ya da 4,2 ışık yılı uzaklıkta olan Proxima Centauri’dir. Bu yıldızın ışığının dünyaya ulaşması için 4,2 yıl gerekmektedir. Uzay Mekiği’nin yörünge hızıyla (saniyede 8 kilometre — yaklaşık saatte 30,000 kilometre) yolculuk edersek Proxima Centauri’ye ulaşmak için 150.000 yıl gerekecektir. Buna benzer uzaklıklar gökada tekerlerinde, Güneş’in çevresi de dahil olmak üzere tipik uzaklıklardır. Yıldızlar gökadaların merkezinde ve küresel kümelerde birbirlerine çok daha yakın olabildikleri gibi, gökada aylasında çok daha uzak olabilirler.

Düşük yoğunlukları nedeniyle gökadalarda yıldızların birbiriyle çarpışmasının oldukça nadir olduğu düşünülür. Ancak gökada merkezi ile küresel kümenin çekirdeği gibi daha yoğun bölgelerde bu çarpışmalara daha sık rastlanır. Bu tür çarpışmalar sonucunda mavi başıboşlar diye bilinen oluşumlar olur. Bunlar ana dizide aynı parlaklığa sahip yıldızlardan daha yüksek yüzey sıcaklığına sahip anormal yıldızlardır.

Özellikler

Yıldızların hemen hemen tüm özelliklerini başlangıçtaki kütlesi belirler. Bu özelliklerin arasında parlaklık, büyüklük, yıldızın gelişimi, yaşam süresi ve kaçınılmaz sonu da bulunur.

Yaş

Yıldızların çoğu 1 milyar ile 10 milyar yıl arasında yaşa sahiptir. Bazı yıldızlar gözlemlenen evrenin yaşı olan 13,7 milyar yaşına yakındır. (Bakınız Big Bang.) Yıldız ne kadar büyük olursa yaşam süresi de o kadar kısa olur çünkü büyük yıldızların çekirdeklerinde daha büyük olan basınç hidrojenin daha hızlı yanmasına neden olur. En büyük yıldızlar ortalama bir milyon yıl yaşarlarken minimum kütleye sahip olan kırmızı cüceler yakıtlarını çok yavaş yaktıklarından on ile yüz milyar yıl arasında yaşarlar.

Kimyasal bileşim

Yıldızlar oluştuklarında yaklaşık kütlelerinin %70’i hidrojen, %28’i helyum, geri kalanı da ağır öğelerdir. Genel olarak ağır öğelerin oranı yıldız gazyuvarında bulunan demir içeriğiyle belirlenir çünkü demir hem sık bulunan bir öğedir hem de soğurma çizgileri görece daha kolay ölçülür. Yıldızların oluştuğu özdeciksel bulutlar üstnova patlamalarıyla sürekli olarak ağır öğelerle zenginleştiğinden bir yıldızın kimyasal bileşimi yaşını belirlemek için kullanılır. Ağır öğelerin oranı ayrıca yıldızın bir gezegen sisteminin olması olasılığının da bir göstergesi olabilir.

Bugüne kadar ölçülen en düşük demir içeriğine sahip olan yıldız HE1327-2326 no.lu cücedir. Yalnızca Güneş’in demir içeriğinin 200.000 de birine sahiptir.

Çap

Dünya’ya olan büyük uzaklıkları nedeniyle Güneş dışındaki tüm yıldızlar, Dünya’nın havayuvarının etkisiyle gece gökyüzünde göz kırpan parlak noktalar olarak insan gözüne görünürler. Yıldız tekerleri yeryüzündeki optik teleskoplar tarafından gözlemlenemeyecek kadar küçük açısal boyutlarda olduklarından bu nesnelerin resimlerini alabilmek için girişim aracı içeren teleskoplar gerekir. Güneş’te bir yıldızdır ancak teker olarak görünecek ve günışığı sağlayacak kadar Dünya’ya yakındır. Güneşten sonra en büyük görünen boyuttaki yıldız yalnızca 0,057 SOA’lık açısal çapı olan R Doradus yıldızıdır.

Yıldızlar bir şehirden daha büyük olmayan ılıncık yıldızlarından Orion takımyıldızında bulunan ve Güneş’in 1.000 katı büyük olan yaklaşık 1,6 milyar kilometrelik çapı olan Betelgeuse gibi üstdevlere kadar sıralanırlar. Ancak Betelgeuse’ün yoğunluğu Güneş’inkinen çok daha azdır.

Devinim

Bir yıldızın Güneş’e göre hareketi yıldızın kaynağı ve yaşı için olduğu kadar yapısı ve bulunduğu gökadanın gelişimi hakkında da önemli bilgiler sağlayabilir.

Bir yıldızın özdevimi teğetsel hızıdır. Bunun belirlenmesi için yılda mas (mili SOA) birimi kullanılarak çok hassas gökölçümleri yapılır. Bir yıldızın ıraklık açısını belirleyerek bir yıldızın özdevimi hız birimlerine çevrilebilir. Yüksek özdevimi olan yıldızlar Güneş’e görece daha yakın olan yıldızlardır ve ıraklık açısı ölçümü için oldukça iyi adaylardır.

Dikeyhız yıldızın güneşe doğru ya da güneşten uzağa olan hızıdır. Bu hız tayf çizgilerindeki doppler kayması ile belirlenir ve birimi kilometre/saniyedir.

Her iki hareket hızı da belirlendikten sonra bir yıldızın Güneş’e ya da gökadaya göre olan uzay hızı belirlenebilir. Yakın yıldızlar arasında öbek I yıldızların daha yaşlı olan öbek II yıldızlara göre daha düşük hızlara sahip oldukları bulunmuştur. Öbek II yıldızların gökada düzlemine eğik olan eliptik yörüngeleri bulunur. Yakındaki yıldızların devinimlerinin karşılaştırılması sonucunda yıldız toplulukları da tanımlandı. Bunlar büyük bir olasılıkla oluşumlarının kaynağında aynı dev özdeciksel bulutları paylaşıyorlardı.

Kütle

Bilinen en büyük yıldızlardan biri , Güneş’in kütlesinin 100 – 150 katı büyük olan ve bir kaç milyon yıllık çok kısa bir yaşam süresine sahip olan Eta Carinae yıldızıdır. Yakın geçmişte yapılan Arches kümesindeki bir çalışma evrenin içinde bulunduğu dönem içinde 150 güneş kütlesinin üst sınır olduğunu önermektedir. Bu sınırlamanın nedeni kesin olarak bilinmese de kısmen bir yıldızın gazyuvarından gazları kaçırmadan geçebilecek olan maksimum parlaklık miktarını belirleyen Eddington parlaklığı nedeniyle olduğu düşünülmektedir.

Big Bang’ten hemen sonra oluşan yıldızlar, bileşimlerinde lityumdan daha ağır öğe bulunmaması nedeniyle 300 güneş kütlesi ya da daha büyük olabilirler. Bu aşırı büyük Öbek III yıldızların soyu çok uzun zamandır tükenmiştir ve ancak teorik olarak bulunurlar.

Jüpiter gezegeninin kütlesinin 93 katı bir kütleye sahip olan ve AB Doradus A yıldızının eşi olan AB Doradus C yıldızı, çekirdeğinde çekirdek kaynaşması süren bilinen en küçük yıldızdır. Güneş’e benzer metallikte olan ve teorik olarak çekirdeğinde hala çekirdek kaynaşması sürebilecek olan minimum kütle yaklaşık olarak Jüpiter’in 75 katı olarak tahmin edilmektedir. Ama metallik düşük olduğunda, sönük yıldızlar üzerine yapılan bir çalışma minimum yıldız boyutunun güneşin %8,3’ü yani Jüpiter’in kütlesinin yaklaşık 87 katı olduğunu göstermektedir. Bundan daha küçük boyutta olan yıldızlara kahverengi cüceler denir ve yıldızlar ile gaz devleri arasında çok iyi tanımlanamamış bölgede yer alırlar.

Yıldızın yarıçapı ve kütlesi yüzeydeki kütleçekimini belirler. Dev yıldızlar ana dizideki yıldızlardan daha düşük bir yüzey kütleçekimine sahip iken beyaz cüceler gibi dejenere olmuş yoğun yıldızların yüzey kütleçekimi daha büyüktür. Yüzey kütleçekimi yıldızışığının tayfını etkiler; daha yüksek kütleçekimi soğurma çizgilerini genişletir.

Dönme

Yıldızların dönme hızı tayfölçümü ile yaklaşık olarak tahmin edilebilir ya da yıldız lekeleri dönme hızının izlenmesiyle daha kesin olarak belirlenebilir. Genç yıldızlar eşleklerinde (ekvator) 100 km/s’yi geçen büyük dönme hızlarına sahiptir. Örneğin B sınıfı yıldız Achernar kutuplar arasındaki uzaklıktan %50 daha büyük bir eşlek çapına yolaçan yaklaşık 225 km/s’lik ya da daha büyük bir eşlek dönme hızına sahiptir. Bu hız ulaşıldığında yıldızın parçalanacağı dönüşül (kritik) hız olan 300 km/s’den çok az düşük olan bir hızdır. Karşılaştırıldığında Güneş ancak her 25 – 35 günde bir döner ve eşlek dönme hızı 1.994 km/s’dir.Bir yıldız ana dizi üzerinde gelişimini sürdürürken, mıknatıssal alanı ve yıldız rüzgarı dönme hızını önemli miktarda azaltmaktadır.

Dejenere yıldızlar yoğun bir kütleye sıkıştıklarından yüksek bir dönme hızına sahiptirler. Ancak açısal devinirliğin (açısal momentum) korunumundan (dönen bir cismin boyutundaki küçülmeye karşın dönme hızını arttırması) beklendiği hıza nazaran oldukça düşük dönme hızlarına sahiptir. Yıldızın açısal devinirliğinin önemli bir kısmı yıldız rüzgarının sonucunda oluşan kütle kaybıyla dağılır. Bunun yanı sıra bir atarcanın (pulsar) dönme hızı oldukça yüksektir. Örneğin Yengeç bulutsusunun merkezindeki atarca saniyede 30 kere döner. Atarcanın dönme hızı ışıma nedeniyle giderek yavaşlayacaktır.

Sıcaklık

Ana dizideki bir yıldızın yüzey sıcaklığı çekirdekteki erke üretim hızı ve yıldızın yarıçapı ile belirlenir. Büyük yıldızlar 50,000 K’e varan yüzey sıcaklıklarına sahip olabilirler. Güneş gibi daha küçük olan yıldızların yüzey sıcaklığı bir kaç bin derece civarındadır. Kırmızı devler 3,600 K gibi görece düşük bir yüzey sıcaklığına sahip olmalarına rağmen çok geniş dış yüzey alanları nedeniyle yüksek parlaklığa sahiptirler.

Yıldız sıcaklığı değişik öğelerin erke kazanma ya da yükünleşme (iyonlaşma) hızını belirleyebileceğinden tayf üzerinde karakteristik soğurma çizgileri olarak belirirler. Bir yıldızın yüzey sıcaklığı, görünür saltık büyüklüğü (mutlak büyüklük) ve soğurma özellikleri ile yıldızın sınıflandırılmasında kullanılır.

Işıma

Çekirdek kaynaşmasının bir ürünü olarak yıldızlar tarafından üretilen erke hem akımmıknatıssal ışınım (elektromanyetik radyasyon) hem de parçacık ışınımı olarak uzaya yayılır. Yıldız tarafında yayılan parçacık ışınımı yıldız rüzgarı (yıldızın dış katmanlarından yayılan serbest önelcik (proton), alfa parçacığı ve beta parçacığı gibi elektrikle yüklü parçacıkların düzenli akışı olarak görülür) ve yıldız çekirdeğinden çıkan düzenli bir nötrino akışı olarak kendini gösterir.

Çekirdekteki erke üretimi yıldızların bu kadar çok parlak olmasının nedenidir. Ne zaman bir öğenin iki ya da daha fazla öğecik (atom) çekirdeği birleşerek daha ağır bir öğenin öğecik çekirdeğini (atom çekirdeği) oluşturmak için kaynaşsa oluşan çekirdek kaynaşması tepkimesinden gamma ışını ışıközü (foton) salınır. Bu erke yıldızın dış katmanlarına ulaştığında görünür ışığın da dahil olduğu diğer akımmıknatıssal erkeye (elektromanyetik enerji) dönüşür.

Bir yıldızın görünür ışığının doruk titreşim sayısınca belirlenen (frekansı) rengi yıldızın ışıkyuvarını da içeren (fotosfer) dış katmanlarına bağlıdır. Görünür ışığın yanı sıra yıldızlar insan gözünün göremediği akımmıknatıssal ışınım türleri de yayar. Aslında yıldızların akımmıknatıssal ışınımı akımmıknatıssal izgenin (elektromanyetik tayf) en uzun dalgaboyu olan radyo dalgaları ve kızılötesiden en kısa dalgaboyu olan morötesi, X ışını ve gamma ışınına kadar tamamını kapsar. Yıldızların akımmıknatıssal ışımasının görünür ya da görünmez tüm bileşenleri özellikleri ayırtetmede önem taşır.

Yıldız tayfını kullanan gökbilimciler yıldızın yüzey sıcaklığını, yüzey kütleçekimini, metalliğini ve dönme hızını belirleyebilirler. Iraksal açı ölçümüyle yıldızın uzaklığı da biliniyorsa parlaklığı da belirlenebilir. Daha sonra yıldız modellemelerine bakılarak kütle, yarıçap, yüzey kütleçekimi ve dönme sıklığı (frekansı) tahmin edilebilir. Çiftyıldız sistemlerindeki yıldızların kütlesi doğrudan ölçülebilir. Kütleçekimsel mikrolens yöntemi de bir yıldızın kütlesini belirler.) Bu değişkenleri kullanan gökbilimcileri yıldızın yaşını da tahmin edebilir.

Parlaklık

Gökbiliminde parlaklık bir yıldızın birim zamanda yaydığı ışığın ya da diğer ışınım erkesinin miktarıdır. Bir yıldızın parlaklığı yarıçapı ve yüzey sıcaklığı ile belirlenir.

Yüzeyde görülen ve ortalamadan düşük sıcaklık ile parlaklığa sahip olan bölgelere yıldızlekesi denir. Güneş gibi küçük, cüce yıldızlar genel olarak çok az miktarda küçük yıldızlekesi olan tekerlere sahiptir. Daha büyük dev yıldızlar daha büyük ve bariz yıldızlekelerine sahiptir ve güçlü yıldız kenar kararması gösterirler. Bu yıldız tekerinin kenarlarına doğru parlaklığın azalmasıdır. UV Ceti gibi kırmızı cüce parıltılı yıldızlarda oldukça belirgin yıldızlekesi oluşumları gösterebilirler.

Kadir sınıfı

Bir yıldızın görünürdeki parlaklığı kadir sınıfı ile ölçülür. Kadir sınıfı yıldızın parlaklığı, Dünya’dan uzaklığı ve havayuvardan geçerken uğradığı değişime göre yıldızın parlaklığını belirler.

Saltık büyüklük (mutlak kadir) yıldız ile Dünya arasındaki mesafe 10 parsek (32,6 ışık yılı) olsa kadir sınıfının ne olacağıdır ve doğrudan yıldızın parlaklığına bağlıdır.

Hem görünür hem de mutlak kadir sınıfı ölçeği tersüstel (logaritma) sayılarından oluşur. Kadir sınıfındaki bir sayı değişikliği yaklaşık olarak parlaklığın 2,5 katı (100’ün beşinci kökü yaklaşık olarak 2,512) artmasına eşdeğerdir Yani birinci kadir sınıfındaki (+1.00) bir yıldız ikinci kadir sınıfındaki (+2.00) bir yıldızdan 2,5 kat daha parlaktır, ve altıncı kadir sınıfından (+6.00) bir yıldızdan 100 kat daha fazla parlaktır. Uygun gözlem koşullarında gözle görülebilen en sönük yıldızlar yaklaşık +6 kadir sınıfındadır.

Hem görünür hem de mutlak kadir sınıfı ölçeğinde kadir sınıfı sayıs küçüldükçe yıldızlar daha parlak olur. Her iki ölçekte de en parlak yıldızlar eksi kadir sınıfında yer alır. İki yıldız arasındaki parlaklık farkını hesaplamak için parlak yıldızın kadir sınıfı (mb) daha sönük olan yıldızın kadir sınıfından (mf) çıkarılır ve aradaki fark 2,512 sayısının üssü olarak alınır; yani:

\Delta = m_f - m_b
2.512^} = parlaklıktaki değişim


Hem parlaklığa hem de Dünya’dan uzaklığa bağlı olarak bir yıldızın saltık kadir sınıfı (M) ile görünür kadir sınıfı (m) tam olarak birbirlerine eş değildir.; örneğin parlak bir yıldız olan Sirius’un görünür kadir sınıfı −1,44’tür ancak saltık kadir sınıfı yalnızca +1,41’dir.

Güneş’in görünür kadir sınıfı −26,7’dir ama saltık kadir sınıfı yalnızca +4.83. Geceleri gökyüzünde görülen en parlak yıldız olan Sirius Güneş’ten yaklaşık olarak 23 kat daha fazla parlaktır, gece gökyüzündeki ikinci en parlak yıldız olan Canopus −5,53’lük saltık büyüklüğü ile Güneş’ten 14.000 kat daha fazla parlaktır. Canopus, Sirius’tan daha fazla parlak olmasına rağmen, Sirius daha parlak olarak görünür. Bunun nedeni Sirius’un Dünya’dan yalnızca 8,6 ışıkyılı uzakta olmasına karşın Canopus’un 310 ışıkyılı uzakta olmasıdır.

2006 yılı itibariyle bilinen en yüksek saltık kadirsınıfına sahip olan yıldız −14,2 ile LBV 1806-20 yıldızıdır. Bu yıldız Güneş’ten 38 milyon kat daha parlaktır. Bilinen en az parlaklığa sahip yıldızlar NGC 6397 kümesinde yer alırlar. BU kümedeki en sönük kırmızı cücelerin kadir sınıfı 26’dır ama 28 kadir sınıfına sahip bir beyaz cüce de bulunmuştur. Bu yıldızlar o kadar sönük bir ışığa sahiptirler ki ışıkları Ay üstünde yakılan bir mumışığının Dünya’dan görünüşü kadardır.

Sınıflandırma

Tayflarına göre çok sıcak olan O sınıfı yıldızlardan gazyuvarlarında özdeklerin (molekül) oluşabileceği kadar soğuk olan M sınıfı yıldızlara kadar farklı yıldız sınıflandırmalarıı bulunur. Azalan yüzey sıcaklıklarına göre ana yıldız sınıflandırmasındaki sınıflar şöyledir: O, B, A, F, G, K, ve M. Nadir bulunan tayf özelliklerine sahip yıldızlara özel sınıflandırmalar da bulunur. Bu tiplerin içinde en çok rastlananlar en soğuk düşük kütleli yıldızlar için L sınıfı ve kahverengi cüceler için de T sınıfıdır.

Her harfin 0 ‘dan 9 ‘a (en sıcaktan en soğuğa) sıralanan 10 alt sınıfı bulunur. Bu sistem sıcaklıklar ile oldukça uyumlu da olsa en sıcak uca gidildikçe sistem bozulur; O0 ve O1 sınıfı yıldızlar varolmayabilirler.

Bunlara ek olarak yıldızların uzaysal boyutu ve yüzey kütleçekimine denk gelen "parlaklık etkilerine" göre de sınıflandırılabilir. Bu ölçekteki yıldızlar 0 sınıfından (üstündevler) III sınıfına (dev) , V sınıfından (ana dizi cüceleri) VII sınıfına (beyaz cüceler) dizilirler. Yıldızların çoğu hidrojen yakan sıradan yıldızların oluşturduğu ana dizide bulunur. Saltık kadir sınıflarına ve tayf tiplerine göre sınıflandırıldıklarında dar bir bandın üzerinde yer alırlar. Güneş orta sıcaklığa ve sıradan büyüklüğe sahip ana dizide yer alan G2V tipi bir sarı cücedir.

Küçük harf kullanılan ek bir isimlendirmede tayfın kendine özgü özelliklerini belirtmek için kullanılır. Örneğin "e" harfi yayım çizgilerinin (emisyon çizgileri) varlığını belirtirken "m" harfi normalötesi yüksek metal düzeyini belirtir. "var" ise tayf tipinde değişiklikler olduğunu belirtir.

Beyaz cücelerin D harfiyle başlayan kendi sınıflandırmaları vardır. Tayfta belirgin olan çizgilerin tipine göre DA, DB, DC, DO, DZ, ve DQ alt sınıflarına ayrılırlar. Bunu sıcaklık dizgesini belirten sayılar eklenir.

Değişen yıldızlar

Değişen yıldızlar, içsel veya dışsal özellikleri nedeniyle parlaklıklarında sıralı ya da rasgele değişiklikler gösteren yıldızlardır. İçsel özellikleri nedeniyle değişen yıldızlar üç ana gruba ayrılabilirler.

Zonklayan değişen yıldızlar, yıldızın yaşlanma süreci nedeniyle zaman içinde büyüyerek ya da küçülerek yarıçapı değişen yıldızlardır. Cepheid ve cepheid benzeri yıldızlar ile , Mira gibi uzun dönemli yıldızları içerir.

Patlayan değişen yıldızlar kütle fırlatma ya da püskürtme olayları nedeniyle parlaklıklarında ani yükselmeler gösteren yıldızlardır. Bu grubun içinde önyıldızlar, Wolf-Rayet yıldızları, ve Parıltılı yıldızlar ile dev ve üstdev yıldızlar da bulunur.

Afet ya da patlama değişken yıldızlarının özelliklerinde oldukça dramatik değişiklikler olur. Bu grubun içinde Novalar ve Üstnovalar bulunur. Yakınında beyaz cüce bulunan bazı çiftyıldız sistemleri nova ve Tip 1a üstnova gibi olağanüstü yıldız patlamalarına neden olabilir. Beyaz cüce eşyıldızından hidrojen alarak çekirdek kaynaşması olana kadar kütlesinin artmasıyla patlama oluşur. Bazı novaların tekrar eden hatta sıralı orta ölçekte patlamaları olur.

Çiftyıldızlarda yıldız tutulması gibi dışsal nedenlerle de yıldızların parlaklığı değişebilir. Ayrıca dönen yıldızlarda oluşan aşırı yıldızlekeleri nedeniyle de parlaklık değişebilir. Yıldız tutulmasına örnek verilebilecek olan çiftyıldız sistemi Algol’dur; parlaklığı düzenli olarak 2,87 gün içinde 2,3 ile 3,5 kadir sınıfı arasında değişir.

Yapı

Kararlı, ana dizi yıldızının içi kuvvetlerin birbirini sürekli karşıladığı sürekli bir denge halindedir. Birbirini dengeleyen kuvvetler içeri doğru yönelen kütleçekim kuvveti ve bunu karşılayan plazma gazının ısı erkidir. Bu kuvvetlerin birbirini dengelemesi için tipik bir yıldızın çekirdeğindeki sıcaklık 107 K ya da daha yüksek olmalıdır. Bir ana dizi yıldızının hidrojen yakan çekirdeğinde ortaya çıkan sıcaklık ve basınç çekirdek kaynaşmasının oluşması ve yıldızın daha fazla çökmesini önleyecek kadar yeterli erke üretir.

Öğecik çekirdekleri yıldızın çekirdeğinde kaynaştıkça gamma ışınları şeklinde erke yayarlar. Bu ışıközleri (foton) çevresini saran plazma ile etkileşime girerek çekirdeğe ısı erkesi eklerler. Ana dizideki yıldızlar hidrojeni helyuma çevirerek yavaş ama düzenli artan bir oran da çekirdekteki helyumu artırırlar. Sonunda helyum oranı baskın hale gelir ve çekirdekteki erke üretimi durur. Bunun yerine 0,4 güneş kütlesinden büyük yıldızlarda dejenere olmuş helyum çekirdeğin çevresinde yavaşça genişleyen kabukta çekirdek kaynaşması oluşur.

Hidrostatik dengenin dışında kararlı bir yıldızın içinde erke dengesini sağlayacak ısıl denge de bulunur. İçeride bulunan ışınsal sıcaklık eğimi sonucunda dışarıya doğru sürekli olarak bir erke akısı oluşur. Yıldızın herhangi bir katmanından dışa doğru akan erke akısı , yukarıdan içeriye doğru gelen erke akısına tam olarak denktir.

Işıma bölgesi yıldızın içinde erke akısını sağlayacak kadar verimli bir ışıma aktarımı olan bölgedir. Bu bölgede plazma hareketsizdir ve herhangi bir kütle hareketi sönümlenir. Eğer böyle olmazsa plazma dengesiz hale gelir ve ısıyayımsal bölge oluşturacak şekilde ısıyayım (konveksiyon) oluşur. Bu çekirdeğin yakınında ya da dış katmanın yüksek donukluk olan bölgelerinde, çok yüksek erke akısının ortaya çıktığı yerlerde ortaya çıkar.

Ana dizi yıldızının dış katmanlarında ısıyayımı oluşması tayf tipine bağlıdır. Güneş’in bir kaç katı kütlesi olan yıldızların içlerinde ısıyayımsal, dış katmanlarında da ışıma bölgeleri bulunur. Güneş gibi küçük yıldızlar da ise tam tersi ısıyayım dış katmanlarda yer alır. 0,4 güneş kütlesinden daha az kütleye sahip olan kırmızı cücelerin tamamında ısıyayım bulunur dolayısıyla da çekirdekte helyum birikmesi olmaz. Yıldızların çoğunda yıldz yaşlandıkça ve içinin oluşumu değiştikçe ısıyayım bölgeleri de değişir.

Ana dizi yıldızının gözlemci tarafından görülebilen kısmına ışıkyuvar (fotosfer) denir. Bu katmanda yıldızın plazma gazı ışığın ışıközlerine (foton) karşı saydamlaşır. Çekirdekte üretilen enerji ışıkyuvardan uzaya doğru yayılır. Yıldızlekeleri ya da ortalamadan düşük sıcaklığa sahip bölgelere ışıkyuvarda ortaya çıkar.

Işıkyuvarın üzerinde yıldız gazyuvarı (atmosfer) bulunur. Güneş gibi ana dizi yıldızlarında gazyuvarın en alt düzeyi içinde iğne bulunduğu ve yıldız parlamalarının başladığı ince renkyuvarıdır. Bunu 100 km. içinde çok hızlı bir şekilde sıcaklığın arttığı geçiş bölgesi çevreler. Bunun ötesinde milyonlarca kilometre dışarıya uzanabilen aşırı ısıtılmış plazma olan güneş tacı bulunur. Bir tacın oluşumu yıldızın dış katmanlarında ısıyayımın oluşumuna bağlıdır. Çok yüksek ısısına rağmen taç çok az ışık yayar. Güneş’in tacı yalnızca güneş tutulmasında görünür hale gelir.

Taçtan sonra plazma parçacıklarından oluşan bir yıldız rüzgarı, yıldızlararası ortam ile etkileşecek şekilde dışarı doğru yayılır.

Çekirdek kaynaşması tepkime yolları

Yıldız çekirdek bireşiminin bir parçası olarak, yıldızın kütlesine ve bileşimine bağlı olarak yıldız çekirdeklerinde bir kaç dizi farklı çekirdek tepkimesi yer alır. Kaynaşan öğecik çekirdeğinin net kütlesi tepkimeye giren kütlenin toplamından azdır. Kaybolan bu kütle E=mc² kütle-erke bağıntısına göre erkeye çevrilir.

Hidrojen çekirdek kaynaşma süreci sıcaklıktan etkilenir, çekirdek sıcaklığındaki orta derece bir artış kaynaşma hızını oldukça önemli derecede artırır. Sonuç olarak ana dizi yıldızlarının çekirdek sıcaklıkları küçük bir M-sınıfı yıldızda 4 milyon °K ‘den büyük bir O-sınıfı yıldızdaki 40 milyon °K’ya kadar değişkenlik gösterir.

Güneşin 107 °K’lik sıcaklıktaki çekirdeğinde hidrojen önelcik-önelcik zincirleme tepkimesi ile helyuma dönüşür.:
41H → 22H + 2e+ + 2νe (4,0 MeV + 1,0 MeV)
21H + 22H → 23He + 2γ (5,5 MeV)
23He → 4He + 21H (12,9 MeV)


Bu tepkimeler genel olarak şu tepkimede toplanır:

41H → 4He + 2e+ + 2γ + 2νe (26,7 MeV)


e+ bir artıcık (pozitron), γ gamma ışını ışıközü (foton), νe ise bir nötrinodur. H ve He hidrojen ile helyumun yerdeşleridir (izotop). Bu tepkime sonucu salınan erke milyonlarca elektronvolttur, yani oldukça küçük bir miktar erkedir. Ancak devasa sayıda tepkimenin aynı anda oluşmasıyla yıldızın ışıma çıktısını sağlayacak kadar erke üretilir.

Daha büyük yıldızlarda karbonun tezgen (katalist) olduğu karbon-nitrojen-oksijen çevrimi ile helyum üretilir.

108 °K’lik çekirdek sıcaklıklarına sahip olan ve kütlesi 0,5 ile 10 güneş kütlesi arasında değişen daha gelişmiş yıldızlarda ara öğe olarak berilyumu kullanan üçlü alfa süreci ile helyum karbona dönüştürülebilir.:

4He + 4He + 92 keV → 8*Be
4He + 8*Be + 67 keV → 12*C
12*C → 12C + γ + 7,4 MeV


Yani toplam tepkime:

34He → 12C + γ + 7,2 MeV


Daha büyük yıldızlarda büzülen çekirdeklerde daha ağır öğelerde Neon yanma süreci ve Oksijen yanma süreci ile yakılabilir. Yıldız çekirdek bireşiminin son aşaması kararlı demir-56 yerdeşini üreten Silikon yakma sürecidir. Isıalan (endotermik) süreç haricinde artık çekirdek kaynaşması olamayacağından daha fazla erke ancak kütleçekimsel çöküş ile üretilebilir.

Aşağıdaki örnek 20 güneş kütlesine sahip bir yıldızın tüm yakıtını tüketmesi için gereken zamanı gösterir. O-sınıfı bir ana dizi yıldızı olarak 8 güneş yarıçapına ve Güneş’in parlaklığının 62.000 katına sahip olacaktır.

Ayrıca bakınız

yıldız

Türkçe yıldız kelimesinin Almanca karşılığı.
n. Gestirn, Stern

yıldız

1 . Güneş ve ay dışında gökyüzünde görülen ışıklı gök cisimlerinden her biri:
"Baktık geceden fecre kadar ellerde / Yıldızlara yükselen kadehler gördük."- Y. K. Beyatlı.
2 . Meşhur sinema ve müzikhol sanatçısı, star:
"Bir keresinde de bir yerli opera yıldızımız gelmişti."- H. Taner.
3 . Bir noktadan çevreye beş veya daha fazla çıkıntısı olan çok köşeli şekil:
"Türk bayrağındaki yıldız beş ışınlıdır."-
4 . sıfatBu biçimde olan.
5 . sıfatYıldız biçiminde olan.
6 . mecaziBir toplulukta, bir meslekte, üstün başarı gösteren kimse:
"Cebirde, geometride, fizikte sınıfımızın yıldızı idim."- Y. Z. Ortaç.
7 . mecaziBaht, şans, talih.
8 . denizcilikKuzey yönü.
Atasözü, deyim ve birleşik fiiller
yıldız akmak (veya kaymak veya uçmak) , yıldızı parlamak , yıldızı sönmek , yıldızı (veya yıldızları) barışmamak , yıldızları saymak

yıldız

Türkçe yıldız kelimesinin İngilizce karşılığı.
[Yildiz] adj. astral, planetary, sidereal, star n. star

yıldız

Türkçe yıldız kelimesinin Fransızca karşılığı.
étoile [la], astre [le], star [la]

yıldız

(Türkçe) Kadın ismi 1. Geceleri gökte çıplak gözle ışıklı bir nokta olarak görülen gök cismi, necm, kevkeb, si-tare, ahter. 2. Bir noktadan çevreye beş veya daha fazla çıkıntısı olan köşeli. 3. Baht, talih. 4. Mesleğinde çok parlamış kimse ve daha çok parlamış ki

misafir - 9 yıl önce
yıldız ne kadar büyükse okadar enerji harcar füzyon reaksiyonu yapabilmek kendini bi arada tutabilmek için yıldızların ömrüde büyüklüğüyle ters orantılıdır.

misafir - 9 yıl önce
Bilim adamları bu kadar basit bir şekilde açıkladıklarına göre bu yıldız anladığımızdan daha değerli olmalı. Yıldızı çevreleyen bir hare var. Oldukça basit gibi görülen bu fotoğrafın tamamında farklı gezegenler de olmalı Dünya gibi belki gelişmiş belki gelişmemiş medeniyetler .. ilgili arkadaşlara Kozmik Tohum''u ve 12.gezegen''i okumalarını öneririm evren için.Zecharia Sitchin ''in kitapları ..

Görüş/mesaj gerekli.
Markdown kullanılabilir.

yıldız Resimleri

Yıldız
3 yıl önce

Yıldız, ağırlıklı olarak hidrojen ve helyumdan oluşan, karanlık uzayda ışık saçan, gökyüzünde bir nokta olarak görünen plazma küresi. Bir araya toplanan...

Yıldız, Yıldız
Yıldız sistemi
3 yıl önce

çok sayıda yıldızlardan oluşan yıldız kümesi (İng. star cluster) değildir. Yıldız sistemleri genellikle çift yıldız sistemi ve çoklu yıldız sistemi olarak...

çift yıldız
3 yıl önce

yıldız, ortak kütle merkezinde yörünge yapan iki yıldızdan oluşan bir yıldız sistemidir. İki, üç, dört ya da daha çok yıldızlı sistemler çoklu yıldız...

Çift yıldız, Algol, Astrofizik, Ay, Dünya, Güneş, Sirius, Spektroskopi, Yıldız, Cygnus X-1, Yıldız sistemi
Yıldız kümesi
3 yıl önce

Yıldız kümeleri veya yıldız bulutları, gruplar halinde bir araya gelmiş yıldızların adlandırılma terimi. Yıldız kümelerinin iki tipi ayırt edilebilir:...

Yıldız kümesi, Akrep takımyıldızı, Açık yıldız kümesi, Gökada, Gökbilim, Küresel yıldız kümesi, Kütleçekim, Messier 80, Taslak, Dev özdeciksel bulut, Yıldız oymağı
Açık yıldız kümesi
3 yıl önce

Açık yıldız kümeleri, birkaç bin yıldızdan oluşan bir yıldız grubudur. Açık yıldız kümesini oluşturan yıldızlar aynı dev moleküler buluttan oluşmuşlardır...

Açık yıldız kümesi, Düzensiz gökada, Gökbilim, Sarmal gökada, Taslak, Yıldız, Ülker (yıldız kümesi), Hyades, Dev moleküler bulut
Yıldız Teknik Üniversitesi
3 yıl önce

Yıldız Teknik Üniversitesi (YTÜ), İstanbul, Türkiye'de yer alan; 1911 yılında Kondüktör Mekteb-i Âlîsi adıyla kurulmuş devlet üniversitesidir. Yıldız...

Yıldız Teknik İœniversitesi, Yıldız Teknik İœniversitesi
Hilal ve Yıldız
7 yıl önce

Hilal (ayça) ve yıldız veya ay yıldız, hilal ve hilalin açık ucunda yer alan bir yıldız şeklinden oluşan antik simge. Bu simgenin kullanıldığı bayraklara...

Ülker (yıldız kümesi)
3 yıl önce

Pleiades, Peren veya Pervin) bir açık yıldız kümesidir. Boğa takımyıldızında (Taurus) bulunur. Dünya'ya en yakın açık yıldız kümelerinden ve büyük ihtimalle...

Ülker (yıldız kümesi), Astronom, Açık yıldız kümesi, Boğa takımyıldızı, Dünya, Gökbilim, Işık yılı, Parsek, Taslak, Yıldız kümesi