Derece (Topoloji)

Kısaca: derece, aynı boyutlu topolojik çokkatlılar arasındaki sürekli gönderimler için tanımlıdır. Çokkatlılar pürüzsüzse ve aradaki gönderim de pürüzsüzse gönderimin derecesi, olağan değerlerinin ters görüntüsündeki nokta sayısıyla ilişkilidir. ...devamı ☟

derece, aynı boyutlu topolojik çokkatlılar arasındaki sürekli gönderimler için tanımlıdır. Çokkatlılar pürüzsüzse ve aradaki gönderim de pürüzsüzse gönderimin derecesi, olağan değerlerinin ters görüntüsündeki nokta sayısıyla ilişkilidir. Matematiksel Tanım Diferansiyel Topolojide tanımı X ve Y, n boyutlu pürüzsüz çokkatlılar olsun. X tıkız ve kenarsız (kapalı), Y ise bağlantılı olsun. X'ten Y'ye pürüzsüz bir f gönderimi ve y=f(x) olmak üzere X ve Y'de x ve y noktaları verilsin. x in f gönderiminin kritik noktası olması demek f nin x noktasındaki türevinin rankının n olması demektir. Bu durumda y noktasına f nin bir kritik değeri denir. Y'de kritik olmayan tüm değerlere olağan değer denir. y olağan bir değer olmak üzere y ye giden noktaların mod 2'de sayılmasıyla hesaplanan sayıya f nin mod 2 derecesi denir ve deg_2 f olarak gösterilir: deg_2 f = \# f^(y). Burada \# işareti, kendisini izleyen f^(y) kümesinin eleman sayısını göstermektedir. Bu sayının sonlu olması, X'in tıkızlığı ve y'nin olağan değer olmasıyla garanti edilir. X ve Y çokkatlıları aynı zamanda yönlüyse, her birine verilen birer yön aracılığıyla tamsayı değerli bir derece tanımlanabilir. Şöyle ki, f X'ten Y'ye pürüzsüz bir gönderim ve y, f nin Y'de olağan bir değeri olsun. y ye giden her x noktası için, f nin x teki türevini df(x) olarak gösterelim. df(x), X'in x teki teğet vektör uzayı T_x X ten Y'nin y deki teğet vektör uzayı T_y Y ye doğrusal bir dönüşümdür. Seçilmiş yönlerin belirttiği tabanlarda hesaplanmış df(x) in determinantı pozitifse x noktasını +1, negatifse -1 sayarak elde edilen sayıya f nin derecesi denir ve deg f olarak gösterilir: deg f = \sum_(y)} \mbox(Df(x))).

Kaynaklar

Vikipedi

Bu konuda henüz görüş yok.
Görüş/mesaj gerekli.
Markdown kullanılabilir.