Çokkatlı

Kısaca: Çokkatlı (Alm. Mannigfaltigkeit, İng. manifold, Fr. variété), topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, bir çokkatlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çokkatlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir. ...devamı ☟

Çokkatlı (Alm. Mannigfaltigkeit, İng. manifold, Fr. variété), topolojide soyut topolojik bir uzay. Bu uzayın her noktasının çevresi Öklit uzayına benzer. Bununla birlikte, bir çokkatlı bir Öklit uzayı olmak zorunda değildir. Genel yapısı, bu basit yerel yapısından çok daha karmaşık olabilir. Çokkatlının boyutu, yerel olarak benzediği Öklit uzayının boyutu olarak tanımlanır. Herhangi bir topolojik uzay içinse boyut kavramından söz etmek genelde olası değildir. n boyutlu Öklit uzayı (Rn), n boyutlu bir çokkatlıdır. Birkaç nokta, 0 boyutlu bir çokkatlıdır. Düzlemde bir doğru 1 boyutlu bir çokkatlıdır; her noktasının çevresi R1'e benzer. R3'te bir düzlem ya da bir küre, 2 boyutlu çokkatlı örneğidir; her bir noktasının küme içinde çevresi R2'ye benzer. Sözcüğün kökeni Çokkatlı sözcüğünün Almanca karşılığı Mannigfaltigkeittır (çokyönlülük, çeşitlilik vs.). Bu terim, ilk kez Riemann Habilitation metninde (1854) kullanmıştır. Yerel olarak n boyutlu uzaya benzeyen ama her noktasında farklı eğriliklere sahip olabilecek bir uzay tasarlamış ve bu tür bir uzaya Mannigfaltigkeit adını vermiştir. Habilitation'unda şu satırları okumakta yarar var: Görüldüğü gibi Riemann bu terimi yaratırken, daha sonra Riemann Geometrisi diye anılacak geometriyi kuruyordu. Kullandığı Faltig sözcüğü, kat kat hissinden çok eğriliğin değişmesi yüzünden uzamın bükülüp kırışmasına işaret ediyordu. William Kingdon Clifford 1873'te Nature'da yayınlanan çevirisinde bu sözcüğü "manifoldness" olarak karşılamıştır. Türkçeye çeviri bu sözcük üzerinden yapılmıştır. Fransızca variété terimiyse, (İngilizce'deki variety terimi gibi) cebirsel geometride analitik çokkatlılara işaret eder. Matematiksel tanım '(Kenarı olmayan) n boyutlu çokkatlı', aşağıdaki koşulları sağlayan bir topolojik uzaydır: * Hausdorff'tur; * Herhangi bir noktasının çevresinde öyle bir açık komşuluk bulunabilir ki bu komşuluk Rn'nin açık bir alt kümesine homeomorfiktir; * (Kimi tanımlarda) İkinci sayılabilirlik özelliğini sağlar; * (Kimi tanımlarda) Parakompakttır. Yukarıki tanımda ikinci koşulda Rn yerine, üst yarı Öklit uzayını (yani Rn'de sonuncu koordinatı negatif olmayan noktaların kümesi) temsil etmek üzere Hn konduğunda, bu tanım, kenarı olan (kenarlı) topolojik bir çokkatlı tanımına dönüşür. Bu durumda ikinci koşulda homeomorfizma sözcüğünün anlamlı olabilmesi için Hn üzerinde bir topoloji bulunması gerekir. Bu topoloji standart olarak Rn'den tetiklenen topolojidir. M çokkatlısının bir noktası x, Hn'de açık V kümesine homeomorfik x 'in açık komşuluğu U olsun. Bu homeomorfizma altında x, V 'nin kenarına gönderiliyorsa, x noktasına çokkatlının kenar noktası, tüm kenar noktaların kümesine çokkatlının kenarı denir. Örneğin, düzlemde başnoktaya uzaklıkları 1'den büyük olmayan kümeyi ele alalım. Bu kümeye (kapalı) disk denir ve 2 boyutlu bir çokkatlıdır. Kenarı bir çemberdir. Çember 1 boyutlu bir çokkatlıdır. Kenarı yoktur. n boyutlu, kenarlı bir çokkatlının kenarı, n-1 boyutlu bir çokkatlıdır. Bir çokkatlının kenarının kenarı yoktur (boşkümedir). Bir çokkatlının içinde bir topolojik altuzay aynı zamanda bir çokkatlıysa, bu altuzaya altçokkatlı denir. Yukarıda bir çokkatlının içinde verilen tüm çokkatlılar altçokkatlı örnekleridir.

Notlar

Okuma

*

Kaynaklar

Vikipedi

Bu konuda henüz görüş yok.
Görüş/mesaj gerekli.
Markdown kullanılabilir.