Kuantum Renk Dinamiği

Kısaca: Kuantum renk dinamiği (KRD), kuramsal fizikte güçlü etkileşimi tanımlayan kuram. Güçlü etkileşim de proton, nötron ve pion gibi hadron parçacıklarını oluşturan kuark ve gluonların etkileşimini tanımlayan temel kuvvetlerden biri olan renkyükü kuvvetinin bir sonucudur. Aynı zamanda güçlü etkileşim renkyüklü fermiyonlar olan kuarkların SU(3) grubundaki (takımındaki) Yang-Mills kuramı ile de tanımlanabilir. KRD değişme özelliği olmayan ( ''a'' * ''b'' ≠ ''b'' * ''a'') ...devamı ☟

Kuantum renk dinamiği (KRD), kuramsal fizikte güçlü etkileşimi tanımlayan kuram. Güçlü etkileşim de proton, nötron ve pion gibi hadron parçacıklarını oluşturan kuark ve gluonların etkileşimini tanımlayan temel kuvvetlerden biri olan renkyükü kuvvetinin bir sonucudur. Aynı zamanda güçlü etkileşim renkyüklü fermiyonlar olan kuarkların SU(3) grubundaki (takımındaki) Yang-Mills kuramı ile de tanımlanabilir. KRD değişme özelliği olmayan ( a*bb*a) ayar kuramı ile gösterilen özel bir kuantum alanlar kuramıdır. Aynı zamanda KRD parçacık fiziğinin standart modelinin önemli bir parçasıdır. Yıllar boyunca oldukça büyük bir miktarda KRD'yi olumlayan deneysel veri toplanmıştır. KRD kendine has iki özelliğe sahiptir: *Renkhapsi denilen birinci özellik kuarkların birbirinden ayrıldıkça onları birarada tutan kuvvetin yokolmamasıdır. Bu özellikten dolayı iki kuarkı birbirinden ayırmak sonsuz enerjiyi gerektirir. Kuarklar hadronların içinde toplu bulunurlar ve yalnız başına gözlemlenmemiştir. Serbest kuark araştırmalarının başarısızlıkla sonuçlanmaması KRD'nin matametiksel analizi ile ispatlanmamasına rağmen renkhapsinin fizikçiler tarafından kabul edilen bir düşünce olmasına yol açmıştır. Diğer taraftan renkhapsi olayı lattis KRD'de gösterilebilmektedir. *Asimtotik özgürlük denilin ikinci özellik çok yüksek enerjili tepkimelerde kuarkların ve gluonların çok zayıf etkileşmesidir. KRD'nin bu tahmini 1970'lerde David Politzer, Frank Wilczek ve David Gross tarafından keşfedilmiştir. Bu çalışmaları bahsedilen biliminsanlarına 2004 Nobel fizik ödülünü kazandırmıştır. Göreceli olarak düşük enerjilerde renkhapsi baskın özelliktir ve yüksek enerjilere çıkıldıkça da asimtotik özgürlük baskın özelliktir. Ama bu iki durumu ayıran geçiş henüz anlaşılmamıştır. KRD'nin Terimlendirilmesi Kuark terimi 1929'da Murray Gell-Mann tarafından uydurulmuştur. Kuark kelimesinin temeli ise James Joyce'un Finnegans Wake isimli kitabındaki Muster Mark için üç kuark ifadesidir. KRD'nin üç yükü renkyükü olarak adlandırılır ve insanların görebildiği üç renk olan kırmızı,mavi ve yeşil ile isimlendirilir. İnsanların gördüğü renklerle KRD'nin renkyükleri arasında önemli bir benzerlik yoktur. Tarihsel gelişim Kabarcık odası (bubble chamber) ve kıvılcım oadasının (spark chamber) 1950'lerde icat edilmesi ile birlikte deneysel olarak parçacık fiziğinde birçok hadron olarak isimlendirilen parçacık bulunmuştur. Gözlemlenen parçacık sayısının çokluğu hadronların tamamının temel parçacık olamayacağı düşüncesini doğurmuştur. Öncelikle Eugene Wigner ve Werner Heisenberg tarafından parçacıklar yük ve izospin düşünülerek sınıflandırılmıştır. Sonra, 1953'de, acayiplik (strangeness) özelliğine göre Murray Gell-Mann ve Kazuhiko Nishijima tarafından sınıflandırılmıştır. Sezgisel algıyı arttırmak için hadronlar benzer özelliklerine ve kütlelerine göre sekiz katlı olarak 1961'de Gell-Mann ve Yuval Ne'eman tarafından sınıflandırılmıştır. Gell-Mann ve George Zweig Shoichi Skata'nın yaklaşımını düzelterek 1963'de bu sınıflandırmaların yapısının üç farklı çeşni ile tanımlanabilecek hadronlardan daha küçük olan kuarklarla açıklanabildiğini göstermişlerdir. Kuarkların farklı bir kuantum sayısına daha sahip olabileceklerine dair ilk düşünce Boris Struminsky'nin üç acayip (strange) kuarktan oluşan \Omega^- (sss) üzerine olan bir önyayınında kısa bir dipnot şeklinde yazılmıştır. Bu parçacık üç acayip (s) kuarktan oluşmuştur ve spinleri aynı yöndedir. Ama bu durum kuantumun önemli ilkelerinden biri olan Pauli'nin dışlanma ilkesine terstir. Bu dipnot şu şekildedir: Nikolay Bogolgov doktora öğrencisi olan Boris Struminsky'ye bahsedilen araştırmayı yapmayı önermişti. 1965'de Nikolay Bogolyubov, Boris Struminsky ve Albert Tavchelidze kuarkların bahsedilen kuantum serbestlik dereceleri üzerine yeni bir önyayın yaptılar. Bu çalışma Tavchelidze tarafından diğer çalıma arkadaşlarının iznini almadan Mayıs 1965'de Trieste'de (İtalya) düzenlenen uluslararası bir konferansta sunulmuştur. \Omega^-'ye benzer ilginç bir durum üç tane paralel spin yönelime sahip yukarı (up) kuarktan oluşan \Delta^++ baryonu (uuu) için de gözlemlenmiştir. 1965'de Moo-Young Han kendisinden bağımsız çalışan Yoichiro Nambu ve Oscar W. Greenberg ile birlikte bu sorunu yaklaşık olarak eşzamanlı bir şekilde kuarkların diğer kuantum mekaniksel parçacıklara göre fazladan bir kuantum sayısına sahip olduklarını söyleyerek çözmüşlerdir. Bu kuarkların yeni kuantum sayısı SU(3) ayar takımında renkyükü şeklinde adlandırılan yeni bir serbestlik derecesine karşılık gelmektedir. Han ve Nambu kuarkların kendi aralarında gluon denen ve sekizil yöney ayar bozonları (vector gauge boson) aracılığı ile etkileşebileceğini de söylemişlerdir. Serbest kuark araştırmaları sürekli olarak başarısızlıkla sonuçlandığı için ve o zamana kadar temel parçacık serbest bir şekilde gözlemlenebilir ve yalıtılabilir şeklinde tanımlandığından dolayı Gell-Mann sıklıkla kuarkların cebirsel yapılar tanımına da gerçek parçacıklar sınıfına da uygun olmadığını söylemiştir. Gell-Mann'ın söylediği "kuarklar hapsolmuştur fakat güçlü etkileşim de kuantum alanlar kuramı şeklinde tam olarak ifade edilmeyebilir" cümlesiyle de anlatılabilir. Kuarkların hadronlar içinde hapsolması onları o zamanın temel parçacık tanımına dahil edilememesi ve güçlü etkileşimin tam olarak cebirsel bir kuramla anlaşılamaması durumu Gell-Mann'a bunları söyletmiştir. Richard Feynman yüksek enerji deneylerinin kuarkların gerçek parçacıklar olduğunu gösterdiğini söylemiştir ve kuarkları partonlar şeklinde isimlendirmiştir. (Kuarklar hadronların parçaları olduğu için bu şekilde isimlendirme yapmıştır.) Feynman'ın parçacık tanımına göre temel parçacıklar bir yolu takip edebilen parçacıklardır. Feynman'ın ve Gell-Mann'ın yaklaşımları arasındaki fark kuramsal fizikçiler arasında derin bir ayrımla sonuçlanmıştır. Feynman kuarkların kuantum mekaniğindeki diğer parçacıklar gibi momentum ve konum dağılımına sahip olduğunu düşünmüştür ve (doğru bir şekilde) parton momentumunun yayılmasının kırınımsal saçılma ile açıklanabileceğine inanmıştır. Diğer taraftan Gell-Mann belirli kuark yüklerinin yerinin belirlenebileceğine inanmış ve kuarkların yerinin uzay zaman kırılmasından dolayı yerlerinin belirlenemeyeceği olasılığına da uzak kalmamıştır. Bu düşünce S-dizey kuramından daha aşırı bir yaklaşımdır. James Bjorken noktasal parçacık şeklindeki partonların elektronların protonlarla yaptıkları esnek olmayan çarpışmalarında etkisini göstereceğini söylemiştir ve bu tartışmalı bir şekilde 1969'da SLAC deneylerinde doğrulanmıştır. Bu sonuç fizikçilerin güçlü etkileşim için S-dizeyi yaklaşımını bırakmalarıyla sonuçlanmıştır. David Gross, David Politzer ve Frank Wilczek tarafından güçlü etkileşmede asimtotik özgürlüğün keşfi birçok yüksek enerji deneyinde kuantum alanlar kuramının tedirgileme kuramı (perturbasyon kuramı) tekniğini kullanarak çok hassas öngörüler yapmasına olanak sağlamıştır. Gluonlara dair delil 1979'da PETRA'daki üç jet olayında gözlemlenmiştir. Bu deneyler gittikçe hassaslaşmıştır ve şu anki(2011) en hassas haline tedirgenmeli KRD'nin (perturbative QCD) doğrulanmasında yüzde birkaçlık oranla CERN'in LEP kısmında ulaşmıştır. Asimtotik özgürlüğün diğer tarafında renkhapsi bulunmaktadır. Renkyükleri arasındaki kuvvet uzaklıkla düşmediği için kuarkların ve gluonların hadronlardan ayrıştırılamayacağına inanılmaktadır. Kuramın bu yönü lattis KRD hesaplamaları ile doğrulanmıştır. Ama bu doğrulama cebirsel olarak yapılamamıştır. Clay matematik enstitüsü tarafından duyurulan Milenyum ödüllü sorunlardan biri de bu doğrulamadır. Tedirgemeli olmayan (non-perturbative) KRD'nin diğer çalışılan konuları kuark-gluon plazmanın da dahil olduğu kuark maddesinin halleridir. ==KuramTanımlamalar Parçacık fiziğindeki her alan kuramı gözlemlerden çıkarılmış olan doğanın bazı korunum yasaları (simetrileri) üzerine kurulmuştur. Bunlar iki sınıfa ayrılabilir: *Yerel korunum yasaları; uzay-zamanın her bir noktasında diğer noktalardan bağımsız olarak korunan yasalardır. Bu türdeki korunum yasaları ayar kuramının temelidir ve kendine has ayar bozonlarının kullanılmasını gerektirir. *Genel korunum yasaları; bu türdeki korunum yasalarının geçerliliğinin uzay-zamanın her noktasında aynı anda olabilmesi gereklidir. Kısaca A noktasındaki korunum başka bir B noktasında da aynı anda sağlanmalıdır. KRD SU(3) ayar takımında bir ayar kuramıdır ve bu renkyükünün bir yerel korunum yasası oluşturmasıyla elde edilmiştir. Güçlü etkileşim farklı kuark çeşnileri arasında ayrım gözetmediği için KRD sadece kütle farklarından dolayı korunmayan başka bir deyişle tam korunumu sağlanmayan bir korunum yasasına sahiptir. Enerjinin durumuna göre bazı kuark çeşnilerinin etkileşimlerde aldıkları rol daha fazladır ve bu fark KRD'de tamamıyla çeşniler arasında bahsedilen ve tamamıyla geçerli olmayan korunum yasasının oluşmasıyla sonuçlanır. Bunlara ek olarak başka genel korunum yasaları da vardır. Bunları tanımlayabilmemiz için sağ-elli ve sol-elli parçacıklar arasında ayırım yapabilmemiz gerekmektedir. Bunu tanımlamak için de ayna örtüşmezliği (chirality) kullanılır. Eğer parçacığın spini hareket yönüne pozitif izdüşüm sağlıyorsa sol-elli, negatif izdüşüm sağlıyorsa da sağ-elli olarak isimlendirilir. Ayna örtüşmezliği ve parçacığın sağ veya sol-elli olma durumu tam olarak aynı şeye karşılık gelmez, ama yüksek enerjilerde yaklaşık olarak birbirlerine denktirler. *Ayna örtüşmezliğini korunum yasası (chiral symmetry) sağ ve sol-elli parçacıkların birbirinden bağımsız olarak dönüşümlerini içerir. *Yöney (vektör) korunum yasası (vector symmetry) aynı dönüşümlerin iki ayna örtüşmez duruma da uygulanmasıdır ve köşegen (diagonal) korunum yasası olarak da isimlendirilir. *Eksensel (axial) korunum yasası sağ-elli parçacıklara sol-elli parçacıklara uygulanan dönüşümün tersinin uygulanması durumunda elde edilir.

Ek hatırlatmalar: çiftlenim (duality)

Daha önce bahsedildiği üzere asimtotik özgürlük yüksek enerjilerde (burada yüksek enerji aynı zamanda kısa mesafelere karşılık gelmektedir) parçacıklar arasında herhangi bir etkileşim olmamasıdır. Bu genelde alışılmış olan uzaklık arttıkça etkileşimin düşeceği düşüncesinin bir çiftlenimidir. 1971'de basit ayar değişmez kristal örgü (lattice) modelini geliştiren katı hal kuramcısı Franz Wegner, özgün modelin yüksek sıcaklıktaki yapısı çiftlenik modelin (dual model) düşük sıcaklıklardaki yapısına karşılık gelmektedir ve bu da açık olmayan bağdaşıklıkların asimtotik bozunumu olarak isimlendirilir. Buradaki yüksek sıcaklığın yapısı uzun mesafelerde bağdaşıklığın (correlation) güçlü kayboluşu ile düşük sıcaklığın yapısı ise nerdeyse mükemmel düzenlemelerin kısa mesafelerdeki farklılıkları ile benzeştirilebilir. Burada Wegner modeli ile bir uyuşmazlık vardır ve sadece çiftlenik model bulunur. Bu da özgün modelde kuarkların dalganması gerekirken sadece bilinen çiftlenik modelde gluonların dalgalanması ile anlaşılabilir.

Gruplar ve korunum yasaları

Renkyükü grubu SU(3) yerel korunum yasalarından çıkmaktadır ve bunun ayar grubunun belirlenmesi ile KRD elde edilir. Elektrik yükünün sınıflandırılması ve yerel korunum yasalarının uygulanması U(1) grubunu verir ve bunun ayar grubunun belirlenmesi Kuantum elektrodevinimini (KED) verir, KED'de yer değiştirme özelliğine sahip bir gruptur. Eğer kütlesiz kuarklara göre Nf çeşnili KRD'nin uyarlanmış bir hali düşünülürse genel korunum yasasına sahip (ayna dönüşmez) çeşnili bir SU_L(N_f)\times SU_R(N_f)\times U_B(1)\times U_A(1) grubu elde edilir. Ayna örtüşmezliğinin korunması KRD'nin temel boşluğu tarafından ayna örtüşmez yoğunlaşmasıyla aniden yöneyli (L+R) SU_V(N_f) korunum grubuna kırılır. Kuarkların baryon sayısı U_B(1) karşılık gelen yöney korunumu mutlak bir korunumdur. Eksensel U_A(1) korunumu kalsik fizikte mutlaktır fakat kuantumda korunmaz ve bu durum ayrıklık olarak isimlendirilir. Gluon alanının oluşturduğu düşünülen instanton bu ayrıklık ile ilgilidir. KRD'de iki farklı SU(3) eşbakışımı (simetrisi) vardır. İlki kuarkların farklı renkyüklerine etki eder, ve bu gluonların aracılık ettiği kesin bir ayar eşbakışımıdır (exact gauge symmetry). İkinci eşbakışım çeşni eşbakışımıdır ve SU(3) için üç tane çeşni düşünülür. Bu eşbakışım, çeşni SU(3), farklı kuark çeşnileri arasında dönüşümü sağlayan eşbakışımdır. Çeşni SU(3), KRD yokluğunun (QCD vacuum) yaklaşık bir eşbakışımdır, ve temel bir eşbakışımdır. Bu eşbakışım, en hafif üç kuarkın kütlelerin küçüklüğünden kaynaklanır. KRD boşluğunda kuarkların boşluk yoğuşumları gözlemlenir. Bunların kütleleri KRD ölçeğinden daha küçüktür. Bu yoğuşumlar yukarı kuarkı ve aşağı kuarkı içerir, acayip kuarkı da az bir oranda içerebilir ama diğer daha ağır olan kuarkları içermez. KRD boşluğu SU(2) dönüşümleri altında eşbakışımlıdır, yukarı ve aşağı kuarkın dönüşümleri durumu değiştirmez. Az bir oranda SU(3) eşbakışımı da gösterir, yukarı, aşağı ve acayip kuark dönüşümleri altında bazı drumlar için eşbakışım sözkonusudur. Yaklaşık çeşni eşbakışımları bağıl bozonlara sahiptir, rho ve omega gibi gözlemlenmiş parçacıklar, fakat bunlar sadece gluonlardır ve kütleleri vardır.

Lagrange işlevi

Kuarkların ve gluonların devinimi KRD

Lagrange işlevi

tarafından tarif edilir. Ayar değişmez KRD

Lagrange işlevi

: :: \mathcal_\mathrm = \bar_i\left(i \gamma^\mu (D_\mu)_ - m\, \delta_\right) \psi_j - \fracG^a_ G^_a burada i,\,j,\,\ldots altimleriyle (indeks) birlikte gösterilen \psi_i(x) \, kuark alanıdır ve SU(3) ayar grubun temel gösteriminde uzay zamanda devinimli bir işlevdir. a, b, .... altimleriyle (indeks) birlikte gösterilen G^a_\mu(x) \, gluon alanına karşılık gelmektedir ve SU(3) ayar grubun bitiştirilmiş gösteriminde uzay zamanda devinimli bir işlevdir.γμ Dirac dizeylerini göstermektedir ve Lorentz grubunun yöney gösterimlerini spinör gösterimlerine bağlar. G^a_ \, ayar değişmez gluon alanı kuvvet gergisidir (tensör). Bu Kuantum elektrodinamiğindeki Fμ, ν'ye benzerdir ve aşağıdaki şekildedir: ::G^a_ = \partial_\mu G^a_ - \partial_\nu G^a_\mu - g f^ G^b_\mu G^c_\nu \,, burada fabc SU(3) grubunun yapı sabitleridir. a, b veya c altimleri yukarı veya aşağı rahatlıkla değiştirilebilir, (+......+) gösterimine sahip olduklarından değişimleri kendilerine eşittir,fabc = fabc = f. Öte yandan μ veya ν altimlerinin yukarı veya aşağı hareketi (+---) gösterimine sahip olduklarından farklıdır ve ölçü gergisi (metric tensor) gereklidir..

Kaynaklar

* İngilizce vikipedi

Kaynaklar

Vikipedi

Bu konuda henüz görüş yok.
Görüş/mesaj gerekli.
Markdown kullanılabilir.