Matematikte, tensör, çok boyutlu verinin simgelenebildiği geometrik bir nesnedir. Skaler denilen yönsüz nicel büyüklükler, vektör denilen yönlü büyüklükler ve matris denilen iki boyutlu nesneler birer tensördür. Tensör, tüm bu nesnelerin genelleştirilmiş halidir ve çok boyutlu veri kümeleri için kullanılır. Nesnenin kaç boyutla ifade edildiğine de tensörün derecesi denilir. Bir skalerin derecesi sıfır, bir vektörün bir, bir matrisin ise ikidir. Tensörler üç ve üzeri dereceye sahip olabilir.
Bir tensör vektörler, skaler büyüklükler ve diğer tensörler arasındaki doğrusal ilişkileri ifade etmekte kullanılır. Bu tür ilişkilerin temel örnekleri arasında nokta çarpım, çapraz çarpım ve doğrusal dönüşüm vardır. Örneğin, Cauchy gerilme tensörü T girişi olarak bir v yönü alır ve T(v) gerilmesini üreten giriş ve çıkış böylece şekilde (sağ) gösterilmiştir, iki vektör arasında bir ilişkinin ifade edilmesi için bu vektör, normal yüzeyinde bulunur, tensörlerin kendisi koordinat sisteminin belirli bir seçiminden bağımsız olmalıdır.
Bir koordinat veya referans çerçevesi alınması ve bu taban'da tensör veya referans çerçevesi'ni temsil eden organize birçok boyutlu dizi sonuçlarına tensör uygulamasına "kovaryant" dönüşüm denir. Bir tensörün koordinat bağımsızlığı daha sonra hesaplanmis başka bir koordinat sisteminde ilgili dizi formunu alır. Bu dönüşüm yasası bir geometrik veya fiziksel ortamda bir tensör kavramı içine yerleştirilmiş olarak düşünülmektedir ve dönüşüm yasasının kesin formunun tipini(veya değerliğini) belirler.
Tensör bu tür esneklik, akışkanlar mekaniği ve genel görelilik gibi alanlarda fizik problemlerini formüle etmek, çözmek ve kısa ve öz bir matematiksel çerçeve sağlamak için fizikte önemlidir. Tensörler ilkin mutlak diferansiyel hesapin bir parçası olarak Bernhard Riemann veElwin Bruno Christoffel ve diğerleri ve daha önceki çalışmalara devamla Tullio Levi-Civita ve Gregorio Ricci-Curbastro tarafından düşünülmüştür. Kavram Riemann eğrilik tensörü'nün içinde bir manifold şeklinde içsel diferansiyel geometri'sinin etkin alternatif formülasyonudur.