Eksiklik Teoremi
Kısaca: Kurt Gödel'in 1931 yılında doktorasında verdiği "Principia Mathematica Gibi Dizgelerin Biçimsel Olarak Karar Verilemeyen Önermeleri Üzerine" başlıklı makalesinde 4. önerme olarak geçer. Sezgisel olarak matematikte belitlere (aksiyom) dayanan her sistemin tutarlı olması dahilinde eksik olması gerektiğini bildirir. Gödel'in ifadesiyle: ...devamı ☟
"Her ω-tutarlı yinelgen tamdeyimler sınıfı K'ya öyle yinelgen r sınıf-imleri tekabül eder ki, bu durumda, ne vGnr ne de ~(vGnr), Flg(K)'ya ait olur (Burada v, r'nin bağsız değişken idir)."
Daha Türkçe bir anlatımla:
"Sayı Kuramı nın bütün tutarlı ilksavlı formülasyonları karar verilemeyen önermeler içerir."
Bu önermeyi biraz açacak olursak, tutarlı biçimsel bir dizge (sistem) kurallara ve belitlere dayanıyorsa bu dizge kesinlikle karar verilemeyen (ne doğru ne de yanlış olduğu kanıtlanabilen) önermeler içerecektir. Gödel'in ikinci teoremi, her biçimsel dizgenin sayılar kuramına eşbiçimli (izomorfik) olduğunu söyler. Bu durumda bu teoremle, Sayı Kuramı nın her formülasyonunun eksik olması gerektiği kanıtlanmıştır.
Bu karar verilemeyen önermeler için en çok bilinen örnekler; (sayılar kuramında) Seçim Beliti, (geometride) Pararlellik Beliti, (mantıkta) Eubulides Paradoksu, vs...
En çarpıcı ve yalın olanı Eublides paradoksudur. "Bu önerme yanlıştır" önermesi karar verilemez bir önermedir. Önerme yanlış olduğu varsayılırsa doğru olduğunu ama doğru olduğu varsayılırsa yanlış olduğunu gösteriyor. Bu tür kendi hakkında konuşan önermelere "kendine-göndergeli önerme" terimi ilk Douglas R. Hofstadter 1989'da Türkiye'de Kabalcı yayınlarından çıkan "Gödel, Escher, Bach" kitabında kullanmıştır.
Pek açık olmayan bir örnek ise Paralellik Belitidir. Euclides (Öklit) M.Ö. 300'de yazmış olduğu ve hala geçerli olan geometri kitabı Elementler de tüm geometriyi sezgisel olarak 5 belite dayandırır. Bu 5 belitten sonuncusunun diğer dördünden farklı olduğu göze çarpmış ve matematikçiler bu beliti kanıtlamak için çok uğraşlar vermişlerdir ama kimse başaramamıştır. Daha sonra Lobachevsky, Bolyai ve gizlice Gauss birbirlerinden habersiz bu 5. belitin tersinin alınarak da başka bir geometriye ulaşılabileceğini gösterdirler. Belit Playfair'in versiyonuyla "Bir doğrunun dışındaki bir noktadan geçen ve o doğruya paralel olan sadece ve sadece bir doğru bulunur." önermesidir. Bu önermenin tersi olan "... en az iki doğru bulunur" önermesi Hiperbolik Geometri (ya da Lobachevsky-Bolyai-Gauss Geometrisi) diye yeni bir geometriye kapı açmıştır.
Bu örnekle Gödel'in bu teoreminin aslında matematikte dizgeleri (sistemleri) dallara ayırarak yeni kapılar araladığı görülebilir.
Gödel, bu teoremle Hilbert'in Programı 'nda sorduğu "Matematik tam mıdır?" sorusuna hayır yanıtını verir. Hilbert, Matematiğin her problemini bir bilgisayar programıyla elde edip çözüme ulaştırabilme inancını taşıyordu. Gödel bunu bu teoremle çürütmüştür.
Bu konuda henüz görüş yok.