Dirac, kuramına bilinmeyen bir parçacık sokmak istemediği için, başlangıçta o zaman için bilinen tek artı yüklü parçacık olan protonla özdeşleştirdi. Ancak, kısa süre içinde bu pozitif parçacığın elektrondan iki bin kat daha ağır olan proton olamayacağını, doğanın artı yüklü elektronlar içermesi gerektiğini tahmin etti. Dirac'ta deha belirtileri sık sık ortaya çıkardı.yine de "denklemim benden akıllı çıktı" demekten kendini alamamıştı. Çünkü "akıllı denklemin düşü" 1932'de gerçek oldu.
Pozitronun “Gözlenmesi”
Carl Anderson (1905-1991) 1932 yılında (aynı yıl Chadwick de nötronu keşfetmişti) pozitronu keşfetti. Anderson o zaman genç bir Cal Tech fizikçisiydi. Genç dediysem, atomaltı parçacıkları saptamak ve fotoğraflamak için bir “ Sis Odası” yapacak parlaklıkta bir gençten söz ediyorum. Bu keşfinden dolayı da 1936 yılında Nobel Ödülü’nü aldı. Anderson keşfini, sis odasındaki elektron gibi davranan, ama pozitif yüklü parçacıkların davranışını incelerken yaptı. Pozitif ve negatif yükleri ayırt etmek için onları bir manyetik alan içinde izlemek yeterliydi. Anderson, deneyiyle elektron gibi davranan bazı parçacıkları pozitif yüklü olduğunu manyetik alandaki izlerinden anladı.Karşı-proton da 1955’te Owen Chamberlain (d.1920) ve Emilio Gino Segrè (1905-1989), Clyde Wiegand ve Tom Ypsilantis ile birlikte Berkeley’de keşfedildi.
Leopold Infeld (Einsteinla çalışmış ünlü fizikçi) pozitron için şöyle der: “Bir benzetiş olsun diye pozitronu, kuantum kuramıyla görelilik kuramının yasal evliliğinden doğmuş çocuk olarak betimleyebiliriz.”
Günümüzde üç tip atomaltı parçacık tanınıyor: İlk grup leptonlar;bu gruba muonlar ve nötrinolar giriyor. İkinci grupta hadron, proton, nötron ve pionlar var. Üçüncü grup ise bozonlar; evrende temel kuvvetlerin aktarımını sağlayan küçük mesajcı atomaltı parçacıklar bu üçüncü grubu oluşturur. Örneğin fotonlar elektromanyetik kuvveti taşırken, yerçekimi kuvvetini gravitonların taşıdığı düşünülüyor. Fizikçiler herbir parçacığın görünmez bir ayna görüntüsü de olduğuna inanıyorlar; bu ayna görüntüsüne de antimadde adını vermişlerdi. Günümüzde üç tip atomaltı parçacık tanınıyor: İlk grup leptonlar;bu gruba muonlar ve nötrinolar giriyor. İkinci grupta hadron, proton, nötron ve pionlar var. Üçüncü grup ise bozonlar; evrende temel kuvvetlerin aktarımını sağlayan küçük mesajcı atomaltı parçacıklar bu üçüncü grubu oluşturur. Örneğin fotonlar elektromanyetik kuvveti taşırken, yerçekimi kuvvetini gravitonların taşıdığı düşünülüyor. Fizikçiler her bir parçacığın görünmez bir ayna görüntüsü de olduğuna inanıyorlar; bu ayna görüntüsüne de antimadde adını vermişlerdi Werner Heisenberg’e 20. yy’ın en ilginç buluşunun ne olduğu sorulduğunda, 1930’larda öngörülen karşıtmaddenin keşfi olduğunu belirtmişti. Bu keşfin “zıtların birliği” felsefesinin bir öngörüsü ya da doğrulanması olmadığının altını çizmeliyim!
Fotonun ve nötral pionun dışında bilinen her parçacığın bir karşıt-parçacığı var.
Sağ ve sol elinizi, parmakları aynı yöne bakacak şekilde üst üste getirmeyi deneyin. Getiremezsiniz ! Eldiven teklerini de aynı şekilde üst üste getiremezsiniz. Bir kere daha deneyin! Sağ ayağınızı sol ayakkabınızın tekine sokamazsınız. Buna ayna simetrisi denir. Pekala bir örnek daha: Dış görünüşü bakımından tamamıyla özdeş iki tür salyangoz vardır; ama bunlar evlerini ayrı biçimde yapar: Birinin kabuğunun kıvrımı saat yelkovanı yönünde ötekininki ters yöndedir. Doğa, şaşırtıcıdır. Sağ ve sol olmak üzere iki tür şeker vardır ve ister inanın ister inanmayın, şeker yiyen iki tür bakteri vardır ve bunlar yalnızca bu şekerlerden birini yer. Umarım artık inanmışsınızdır! Bu özellikte birçok molekül vardır. Bunun harika örnekleri de yalnızca kimyada (elbette organik kimyada) vardır.
Bu, çok ilginç bir gerçek. Doğa, hala, bizden harika, bizden yetenekli gibi görünüyor!
Karşıtmadde dünyasının keşfi, doğada simetrinin önemi konusunda bizleri düşündürmeye başladı.
Ayna, insanoğlunun çok önemli buluşlarından olsa gerek. Yapışık ikizler de tıbbın çok önemli konularından biri. Bir maddenin ikizi, önce atomlarında kendini gösteriyor. Bir elementin bir çok atomu, gerçekten birbirinin aynısıdır. Örneğin bir demir parçasında bulunan demir atomları hep aynıdır. Örneğin suda, su moleküllerinin hemen hepsi tıpa tıp aynıdır. Oysa burada sözünü edeceğimiz karşıtmadde örneği çok farklı. Bir parçacığın karşıtparçacığı, parçacıkla aynı kütle ve spine sahiptir ve eğer kararsız ise aynı yarı ömre sahiptir. Tek bir noktada birbirlerinden ayrılıyorlar: Varsa Yükleri farklı. Spini ve manyetik momenti arasındaki yönelim veya ters yönelim de parçacıkla ters yönlüdür.
Elektron negatif, pozitron pozitif; proton pozitif, karşıtproton ise negatif işaretli. Nötron ve karşıtnötron ise yüksüz. Ama nötron, değişik yükteki üç kuarktan oluşuyor. Bunlardan ikisinin yükü –1/3 diğerinin yükü ise +2/3. Anti-madde ve maddenin bir başka özelliği, birbirleriyle karşılaştıklarında birbirlerini yok ederler;örneğin ışığa (fotonlara) dönüşürler.
Yoksul İkizin Öyküsü
Evrenimizde görünen çok sayıdaki gökcisminin hepsi proton,nötron ve elektrondan oluşmuştur. Bilimadamları antimaddeden (antiproton, antinötron ve pozitron) oluşmuş bir galaksinin ya da tek bir yıldızın olmadığından emin görünüyorlar. Bu bir simetri eksikliği değil mi? Evet,en azından şu anda böyle.Karşıt-madde kavramı Leibniz’e, 18.yy’a kadar gider. Leibniz, Newton’un çağdaşdır ve ondan bağımsız diferansiyel ve integral hesabın keşifçisidir. İkili arasındaki tartışma, aşağıdaki gibi anlatılabilir: Eğer bir cismi veya bir tür fiziksel süreci doğrudan doğruya veya aynada izlersek, cismin veya sürecin doğrudan veya yansımış görüntüsünün hangisinin doğrudan, hangisinin yansımadan görüldüğünü ayırt edemeyiz. Bir şeyin gerçeği ile aynadaki görüntüsü arasındaki tek fark, sağ ve solun değişmesidir. Bunun sonucunda,tüm cisimler ve süreçler, sağ ve sol değişmelerine karşı eşit olasılıkla oluşmuşlardır. Bu mantıksal kural, çekirdek ve elektromanyetik etkileşmeler için deneylerle doğrulanmıştır.
Atomaltı dünya'da neler var?
İlk Karşıtparçacık: Pozitron
Bir parçacığı tanımlayan dalga fonksiyonu, bir çeşit alan olarak düşünülebilir. Dalga fonksiyonu, Schrödinger denklemine uyar.;ama bu denklem Newton’un klasik mekaniğinin kuantum mekanik bir yorumudur; özel görelilik çerçevesine girmez. Bu nedenle de Schrödinger denklemi, göreli olmayan kuantum mekaniğini temsil eder. Peki kuantum mekaniğinin göreli bir biçimi var mıdır? Evet bu Dirac denklemidir. Bu denklem de dalga fonksiyonunu belirler. Ancak Dirac denklemi Schrödinger denkleminde bulunmayan birçok yeni özelliği içerir. Örneğin elektronların spin denilen bir özelliği vardır. . Dirac denklemi elektronun bu özelliğini kapsar. Bunu bir topacın kendi ekseni etrafında dönmesi ya da ışığın polarizasyonu gibi bir iç durumu temsil eder olarak düşünebiliriz. Her durumda spin, elektronun içsel açısal momentumuna karşılık gelir ve büyüklüğü ancak Planck sabiti birimlerinde 1/2 yönü de yalnızca yukarı (+1/2) ve aşağı (-1/2) olabilir. Öte yandan neyin yukarı neyin aşağı olduğuna karar vermek ise tıpkı ışığın iki keyfi dikey yöne polarizasyonuna karar vermek gibi keyfi bir şeydir.Spin kuramı, atom spektrumları gibi olguları açıklamak üzere Dirac’tan önce de yürütülmüş olmasına karşın spinin Dirac denkleminde kendiliğinden çıkması göreli kuantum mekaniği için büyük bir zaferdi. Dirac denkleminin diğer bir yeni sonucu “antielektronun” yani “pozitronun” varlığını tahmin etmesiydi.Karşımaddenin öngörülmesi ve gözlenmesi, kuantum kuramının bir başka başarısıdır.
Dirac'ın bu kuramı, elektron spininin (bir elektronun kendi ekseni çevresinde dönmesi) kaynağını ve manyetik momentini açaklamakta başarılı oldu. Dirac, kuramında önemli bir zorlukla da karşılaştı. Denklemin iki çözümü vardı. Göreli(Rölativistik) dalga denkleminin negatif enerji halleri için çözümü gerekiyordu. Fakat negatif enerji halleri var olsaydı pozitif enerji halinde bulunan bir elektronun tepkime sırasında foton yayarak bu hallerden birine hızla bir geçiş yapması beklenirdi. Dirac bu zorluğu, tüm negatif enerji seviyelerinin (durumlarının) dolu olduğunu söyleyen postülatıyla aşmayı başardı. Negatif enerji düzeylerini işgal eden bu elektronlar, "Dirac denizi" olarak adlandırılır. Pauli dışarlama İlkesi, Dirac denizindeki elektronların dış kuvvetlerle tepkisine izin vermediğinden elektronlar doğrudan gözlenemez. Bununla birlikte, eğer bu negatif seviyelerden biri boş olsaydı ve dolu durum denizinde bir boşluk bıraksaydı, boşluk dış kuvvete tepki verecek ve gözlenebilir olacaktı(Bu, bir yarıiletkenin valans bandındaki boşluk davranışıyla benzerdir). Bu kuramın derinliğine ima ettiği: Her parçacığın bir de anti parçacığı olduğudur.
Antiparçacık ile parçacığın kütleleri aynı; ama yükleri zıt işaretlidir. Örneğin elektron ile pozitron, parçacık ve antiparçacıktır; bunların kütleleri aynı ama yükleri zıt işarettedir.
Ancak parçacık ve karşıtparçacığın tek ve bir oldukları durumlar da vardır: Işığın kuantumu, foton, böyle bir parçacıktır. Bunların kendi karşıtparçacıklarıyla aynı oldukları düşünülür. Bu durumda elektrik yükü doğal olarak sıfır olmalıdır. Ama fotonun elektrik yükünün sıfır olduğu ifadesiyle,yüklü parçacıkların foton yayımladıkları (elektromanyetik ışıma) ifadesinin kafaları karıştırmamasına dikkat edilmelidir. Birinci ifadenin anlamı ışığın kendisinin, ışığın kaynağı olamayacağıdır. Doğal olarak parçacığın kütlesi parçacığın türüne bağlıdır;bu sıfır da olabilir. Böyle olması halinde parçacık her zaman ışık hızında hareket eder. Böylesi bir parçacığın başlıca örneği fotondur. Kütleçekiminin kuantumu henüz gözlenmemekle birlikte, bu türden bir parçacık olması beklenir. Günümüzde üç tip atomaltı parçacık tanınıyor: İlk grup leptonlar;bu gruba muonlar ve nötrinolar giriyor. İkinci grupta hadron, proton, nötron ve pionlar var. Üçüncü grup ise bozonlar; evrende temel kuvvetlerin aktarımını sağlayan küçük mesajcı atomaltı parçacıklar bu üçüncü grubu oluşturur. Örneğin fotonlar elektromanyetik kuvveti taşırken, yerçekimi kuvvetini gravitonların taşıdığı düşünülüyor. Fizikçiler her bir parçacığın görünmez bir ayna görüntüsü de olduğuna inanıyorlar; bu ayna görüntüsüne de antimadde adını vermişlerdir.
Kayıp Maddeye Ne Oldu?
20.yy bilimin en büyük buluşu karşı-madde. Madde ve karşıt-maddesi tam olarak bakışımlıdır. Yani neredeyse özdeş ikizlerdir. Ancak tek bir noktada birbirlerinden ayrılırlar: yükleri karşıttır. Bunların bir başka özelliği, birbirleriyle karşılaştıklarında birbirlerini yok etmeleri.Karşıt-hidrojen atomu, normal hidrojenle aynı fotonları yayar.. Bizim yapımızda onlar yok. İki şekilde Dünyamızda bulunuyorlar: Birisi kozmik ışınlar uzayda bunları üretip duruyor. İkincisi de Avrupa Nükleer Araştırma Konseyi(CERN)’nde milyarlarca pozitron ve karşı-proton dolaşıyor. Gökadalardan gelen kozmik ışınlar ve hızlandırıcılar dışında karşı-madeye rastlamıyoruz. Dünya dışında karşı-madde var mı? Karşı-maddenin oluşturduğu bir yıldız varsa o da öbürleri gibi parlayacaktır. Görünüşe göre evrende karşı-madde son derece az. Evrende madde egemen. Neden acaba? Karşıt-madde vardı da yok mu oldu? Buradan evrenimizin geçmişine bakabilir miyiz? Evet dünyamızın bu özelliği onun çok kıymetli bir fosil olduğunu gösteriyor. Göreceğiz.
Elektronlar ve Pozitronlar
Elektronlar,atomun keşfedilen ilk temel parçacığıdır. Bir elektron,atomun kopmuş bağımsız ise kendisini parçacık olarak ortaya koyar;ama hiçbir deney ona uzayda bir boyut göstermeye olanak vermez ve bu parçacık her bakımdan bir nokta gibi davranır. Onun bütün elektronlar için aynı olan iyice belirlenmiş bir elektrik yükü vardır. Bu kadar küçük bir parçacık, günlük kavramlarla anlatılamaz,onun bütün özelliklerini anlamak için kuantum kuramına başvurmak zorunluluğu vardır. Kuantum kuramı,başlangıçta elektronların incelenmesine uygulandı. Böylece yavaş yavaş elektronların bir atom çekirdeği çevresindeki dağılımlarını,hareketlerindeki enerjinin ne olduğunu,bir hareket konumundan,daha az enerjisi olan başka bir hareket konumuna geçtiklerinde nasıl fotonlar saçabildiklerini anlayabildik. 1927’de Amerika’da Davisson ve Germer, İngiltere'de ise G.P.Thomson kristallerden saçılan elektronların kırınım gösterdiklerini buldular. Böylece Broglie’nin hipotezini birbirlerinden bağımsız olarak doğruladılar. Hareketli cisimlerin dalga özelliği dolaysız olarak doğrulanmış oldu. Böylece atomların özelliğinden hareket ederek,fiziğin temelinin yeni baştan kurulduğu görüldü. Elektronların fotonlar yayması türlü maddelerin çıkardığı ışığın tayflarını açıklamaya olanak sağladı ve bu, çok ayrıntılı bir biçimde uygulandı. Elektronların atomlardaki ve moleküllerdeki dağılımının bilinmesi,kimyanın temel taşı oldu. Böylece atomların ve elektronların katı ya da sıvı bir çevredeki davranışlarının incelenmesi ile boyutlanmaya uygun en önemli fizik görüngülerinin yorumlanabileceği ve çoğu kez hesaplanabileceği görüldü: elektrik ve optik özellikler (elektirğin iletilmesi,bir cismin ışığı geçirmesi ya da geçirmemesi,renk,cisimlerin sertliği),manyetik özellikler (ferromanyetik cisimlerin nitelikleri belirtilebildi ve mıknatıslanmanın başlangıcı bulunabildi),ısı özellikleri (ısının iletilmesi ve biriktirilmesi, basınç). Böylece,daha henüz soluğu kesilmemiş olan bu ilerleyişte,atomlara uygulanan bir kuantum mekaniği,bizi çevreleyen doğanın en göze çarpan ya da en ince özelliklerini yorumlamak,araştırmak,belirtmek olanağını sağladı. Kuantum mekaniğinin öncülerinden Dirac, 1928’de elektron üzerine yeniden derin düşüncelere daldı. Bir takım sorunlar onu uğraştırıyordu. Schrödinger’e borçlu olduğumuz bir denklemde formüle edildiği şekli ile kuantum mekaniği,ancak,hızı ışığınkine göre küçük olan elektronları ele alabiliyordu. Bu durum ise açıkça,özel göreliliğin yasaları ile uzlaşamıyordu. Çünkü özel görelilik, hızı ışığın hızına yakın hızlarla ilgiliydi. Dirac, kendine şunu sordu: kapsadığı çok geniş bilgileri görelilik çerçevesine yerleştirmek için, kuantum mekaniğinin temellerini nasıl değiştirebiliriz?Dirac’ta deha belirtileri nadir olmadığından elektronu betimleyen yeni bir denklem biçimini bulmakta gecikmedi;bu denklem, görelilikle uzlaşmak gibi,istenen bir özelliğe sahipti. Bunu incelerken,büyük buluşlar sırasında çoğu kez görüldüğü gibi,bir taş ile birden fazla kuş vurduğunu çok geçmeden anladı. Gerçekten de ileri sürdüğü denklem,istediğinden çok fazlasını getiriyordu. Bu denkeleme göre,hareket eden elektronun,uzun zamandan beri kestirilen;ama henüz açıklanamayan bir biçimde,kendi ekseni etrafında dönmesi gerektiği sonucuna varılıyordu. Buna elektronun spin hareketi diyoruz. Elektronun kendine özgü bazı nitlekileri de ortaya çıkıyordu: elektronun yalnızca elektrikle yüklü olduğu değil,küçük bir mıknatıs gibi davrandığı da deney yoluyla önceden biliniyordu. Dirac bunu da denkleminde buluyor ve bu, ona, bu mıknatısın şiddetini büyük bir kesinlikle hesaplama olanağını sağlıyordu. Denklemi hidrojen atomuna uygulayarak Schröinger’in tanımında bulunmayan bazı incelikleri anlayabildi.Fizikçiler, Dirac’ın denklemindeki başka bir özellikle karşılaşınca bir an için duruksadılar. Bu denklemin, gereğinden fazla çözümü vardı. Bu denklem sayesinde,yalnızca bir elektronun en çeşitli koşullardaki davranışını anlatan çözümler değil,aynı zamanda,anlamı anlaşılamayan tuhaf çözümler de elde ediliyordu. Dirac bunun açıklamasını şöyle ileri sürdü: bu çözümler,diyordu,bir fizik sistemini gösteriyorlar,ama burada bir elektron olacak yerde,yeni bir parçacık,pozitronun varlığı söz konusudur. Bu parçacığın elektronla ortak bir çok özellikleri olmalıdır:aynı kütle,kendi çevresindeki aynı dönüş. Elektrik yükü ise mutlak değer olarak elektronunkine eşit ama manyetik özellikleri gibi ters işarette olmalıdır. Kısa süre sonra Anderson,pozitronu deney yoluyla gözledi.Pozitronun en dikkate değer özelliklerinden biri, bir elektronla çarpıştığı zaman kendini gösterir. O zaman elektron-pozitron çiftinin yokolma olayı ile karşılaşılır:İki parçacık,bir çift foton ya da bir foton üçlüsünü oluşturarak kaybolurlar. Bu oluşum, çoğu kezçoğu kez maddenin yok olması adını alır; çünkü kütlesi olan maddesel olan iki parçacık kaybolarak,fotonlar, yani ışıma oluşmaktadır.Ters tepkime de olanaklıdır: başka bir fotona rastlayan bir foton,bir pozitron-elektron çifti meydana getirebilir.Bununla birlikte bu görüngü ancak çok özel koşullar altında oluşur; çünkü olağan iki ışık huzmesi karşılaştığı zaman bu tür tepkimelerin oluştuğu hiç görülmez. Bunu önleyen temel koşul,enerjinin korunumu yasasıdır. Gerçekten de özel görelilikten beri, her cismin, kütlesine bağlı bir enerjisi olduğu biliniyor. Bu enerjinin ifadesi Einstein’ın tanınmış formülünde verilmektedir:En Küçük ve En Ünlü Denklem: E= mc2
Demek ki elektronla pozitronun bir kütlesi var. Böyle bir parçacık çiftini oluşturmak için iki fotonda da yeterince enerji bulunmalı;kuşkusuz,görülen ışığın fotonları böyle bir enerjiye sahip değildir.Çok yüksek sıcaklıkta bulunan bir sistemde, ısı, fotonlarının ortalama enerjisi sıcaklık ile artar. Sıcaklık 6 milyar dereceye yaklaşınca fotonların enerjisi artık çok sayıda elektronlarla pozitronların oluşmalarını sağlayacak kadar yüksektir. O zaman sürekli olarak,fotonların çarpışması elektron-pozitron çiftleri doğurur;buna karşı bir elektron ile bir pozitronun çarpışması yeniden fotonlar üretir,öyle ki, sistemin tümü denge halinde kalır,çünkü,yaratılan çiftler kadar,aynı anda,yok edilen çiftler de vardır.Daha yüksek sıcaklıklarda aynı olgu sürüp gider;ama bu kez artık yalnızca elektronlarla pozitronlar değil,belki de yeni elemanter parçacıklar da ortaya çıkar.
1925 yılına dek kuantum kuramıyla özel görelilik kuramı,birbirinden bağımsız olarak gelişti. Elektronun atom içindeki hareketini tanımlamak için her iki kurama da gerek vardı. Çünkü elektronlar, göreliliği ilgilendiren yüksek hızlarda hareket ediyordu. Bu da özel görelilik kuramının elektrona uygulanmasını gerektiriyordu. Öte yandan elektron hem parçacık hem de dalga özelliğiyle zaten kuantum kuramının bir konusuydu. Paul Dirac (1902-1984), bu iki kuramı birleştirdi; “Dirac Denklemi” diye ünlenen, elektronun göreli kuantum kuramını ortaya koydu. Bu denklem, çok ilginç,aykırı bir şey de söylüyordu: Elektronla aynı kütlede ama zıt yükte bir parçacığın da varlığını öngörüyordu. Dirac, 1931’de bugün pozitron dediğimiz anti-elekronun varlığından söz ediyordu. Pozitron ile elektronun biraraya gelmesiyle gama ışını yayarak bu çifti yok oluyordu.
Pozitronu, ABD’li fizikçi Carl Anderson, 1932’de gözledi. Anderson, uzaydan gelen yüksek enerjili kozmik ışınların atmosferdeki moleküllere çarpmasıyla antiparçacıkların oluştuğunu farketti. Bu parçacık sis odasında protona göre daha zayıf bir iz bırakıyordu. Sis odasındaki manyetik alan onun kesinlikle pozitif yüklü olduğunu gösteriyordu. Anderson,pozitronu bulmasıyla 1936 Nobel Fizik Ödülünü aldı. Bu,anti parçacıklardan yalnızca biriydi. Yok olma,iki fotonun açığa çıkmasıyla sonuçlanır. Bir fotonla sonuçlanan olaylar ancak çekirdeğin,geri tepme momentumu soğurmak için mevcut bulunması halinde oluşabilir.
1932 yılı atom fiziği bakımından çok yoğun bir yıl oldu. Nötronun bulunuşunun hemen ardından ABD’li kimyacı Harold C.Urey atom kütlesi normal hidrojeninkinin yaklaşık iki katı olan “ağır hidrojeni” yani döteryumu bulmuştu.Yine aynı yıl Joliot-Curie’ler alüminyum çekirdeğinin alfa parçacıklarıyla dövülmesi sonucunda antielektronu bulmuşlardı; ama doğru yorumu Anderson yaptı. Yine 1932’de İlk siklotronu Lawrence çalıştırmıştı. 1939’da Nobel Fizik Ödülünü alan Lawrence, 1945’te Japonya’ya atom bombası atılmasının en ateşli savunucularından biri oldu daha sonra da hidrojen bombası yapımına geçilmesi için Teller ile birlikte yoğun bir kampanya yürüttü.
Karşıt-protonu da 1955’te İtalyan fizikçi Emilio Segrè buldu. Mussolini, Segre’nin Palermo Üniversitesi’ndeki görevine son verince o da ABD’ye göç etti ve sonradan hocası Enrico Fermi ile birlikte atom bombası projesine etkin bir şekilde katıldı.( H.A. Olacağım,s: 43)
Gündelik olgularda en çok elektronları görmemiz,pozitronlara ise çok seyerek olarak rastlamamız garip görünmektedir. Buna çok kere verilen yanıt,pozitronun bir elektrona rastlar rastlamaz onu yok etmesidir. Gene de dünyada pozitrondan çok daha fazla elektron bulunması gariptir. Aynı şey protonlar ve antiprotonlar için de geçerlidir. Bu soruları yanıtlama çabası bizi evrenin başlangıcı konusuna götürecektir. Bu konuya yeniden döneceğim.
Dirac denkleminin iki özelliğinin spin ve pozitronun varlığı olduğunu belirtmiştim. Ama Dirac denklemi tek göreli denklem değildir; elektromanyetik alanı tanımlayan Maxwell denklemleri de görelidir. Kuantum mekaniğinde klasik alanların bile parçacık özellikleri vardır ve klasik parçacıkların alan (dalga) özellikleri de bulunur. Bu nedenle hem alan hem de dalga bütünsel bir biçimde ele alınmalıdır. Böylesi görüşmeler aşağıdaki sonuçlara yol açar.
Elektron ya da foton gibi temel parçacıkların özellikleri kütle, spin ve elektrik yüküdür. Eğer bunlar belirlenirse uygun bir dalga denklemi parçacığı hareketini belirleyebilir. Ayrıca genel olarak her parçacığın zıt elektrik yükü olan bir antiparçacığı vardır. Ancak parçacık ve antiparçacığın tek ve bir oldukları bazı durumlar da vardır. Işığın (elektromanyetik alanın) kuantumu foton böyle bir parçacıktır. Böylesi durumlarda elektrik yükleri doğal olarak sıfır olmalıdır. Ama fotonun yükünün sıfır olduğu ifadesiyle yüklü parçacıkların foton yayınladıkları ifadesinin kafaları karıştırmamasına dikkat edilmelidir. Birinci ifadenin anlamı ışığın kendisinin ışığın kaynağı olamayacağıdır.
Zaman ve Karşıtmadde
Karşıt-maddenin ilginç bir özellliğini, 1965 yılında Nobel Fizik Ödülü’nü Sin-Itiro Tomonaga ve Julian Schwinger ile paylaşan Amerikalı fizikçi Richard Feynman buldu. Feynman, antimaddelerin zaman içinde geriye doğru hareket ettiğini gösterdi. Bir antimadde, zaman içinde geriye doğru hareket ederken,özellikleri önemli ölçüde tersine çeviriliyordu. Örneğin bir elektron, negatif yüklü geçmişten geleceğe hareket ettiriyorsa,geriye doğru olan elektronun onu gelecekten geçmişten hareket ettirmesi gerekiyor. Bu aslında artı yüklü bir parçacığın davranışıdır; yani zaman içinde geriye doğru hareket eden bir elektron bize artı yüklü görünecektir. Feynman’a göre bir pozitron, zaman içinde geriye doğru hareket eden bir elektrondur,dolaysıyla madde ve antimadde arasında zaman tersinmesi ilişkisi vardır.Feynman,Kuantum Elektrodinamiği'nde anlatıyor: “ Şimdi diğer bir olaya bakalım. Bir foton ve bir elektrondan başlayıp bir foton ve bir elektronla bitirelim. Bir foton,bir elektron tarafından soğurulur,elektron biraz ilerler ve yeni bir foton ortaya çıkar. Bu sürece ışığın saçılması denilir. Burada özgün oluşlar söz konusudur. Örneğin,elektron foton soğurmadan önce diğerini salabilir. Daha da acayibi elektronun bir foton salıp,sonra zamanda geri giderek bir başka fotonu soğurarak zamanda yeniden ilerlemisidir. Böylesine “geriye doğru giden” elektronun yolu,laboratuvarda yapılan bir deneyde,gerçekmiş gibi görülebilecek kadar uzun olabilir. Geri giden bir elektron,ilerleyen zaman içinde gözlendiğinde olağan bir elektron gibi görünür;yalnız bu elektron olağan elektronlara doğru çekilir- dolaysıyla buna “artı yüklü” deriz. Bu tür elektrona pozitron denir. Pozitron,elektronun kardeş parçacığı ve bir “karşıt-parçacık” örneğidir. Dirac,”karşıt-elektroların” gerçekliğini 1931’de önerdi. Ertesi yıl Carl Anderson bunları deneysel olarak buldu ve onlara “pozitron” adını verdi. Bugün pozitronlar kolaylıkla yapılabilmekte (örneğin iki fotonun birbiriyle çarpıştırılmasıyla) ve haftalarca bir manyetik alanda saklanabilmektedir.
Bu olgu,yani karşıtparçacık olgusu, geneldir. Doğadaki her taneciğin zamanda ileri gitmek için bir genliği, dolaysıyla bir karşıt parçacığı vardır. Bir parçacık kendi karşıtıyla karşılaştığında birbirilerini yok ederek başka parçacıklar yaratır. Pozitron ve elektronların yok olmasından genellikle bir veya iki foton çıkar. Peki fotonların durumu nedir? Fotonlar zamanda ters yöne gittiklerinde,daha önce de görmüş olduğumuz gibi, her bakımdan aynı görünürler;dolaysıyla fotonlar kendi kendilerinin karşıt parçacıklarıdır. Gördünüz mü ayrıcalığı, kuralın parçası yapmakla zekamızı nasıl gösteriyoruz? Biz zamanda ileri giderken bu geri giden elektronun neye benzediğini size göstermek isterim. Elektron ile zıt yönde giden foton belli bir anda birdenbire iki parçacığa ayrılıyor: bir pozitron ve bir elektron. Pozitronun ömrü fazla değildir:hemen bir elektrona rastlar ve bunlar yok olarak yeni bir foton yaratırlar. Bu arada baştaki fotonun daha önce yaratmış olduğu elektron da uzayzamanda yoluna devam eder.
Değişmiş Görüntüler: Aynadaki Çatlak
Dirac ve Feynman’ın antimadde tanımlarında, antiparçacığın özellikleri ona karşılık gelen parçacıklar tarafından, tıpkı bir maddenin aynadaki yansıma görüntüsünü belirlediği gibi belirlenir. Madde ve antimadde arasındaki bu ilişki simetri dönüşümüne bir örnektir: Bir parçcacık bir antiparçacığa yükünün işaretini, spin ve kuantum sayılarını değiştirerek veya zamanı tersine çevirererk dönüşür. Kuram ayrıca, bir aynanın, bizim hareketlerimizi yansıtması gibi, antiparçacık tepkimelerinin herhangi bir parçacık tepkimelerini yansıttığını söylüyor.
Oysa deneylere göre bu her zaman doğru değildi. Yüksüz kaon adı verilen bir parçacığın bozunumu madde ile antimadde arasında bir asimetri olduğunu gösteriyor. Bu da antimadde yansımsında bozukluk olduğunu kanıtlıyor. Bu ilginç sonuç, kaonun geçmiş ile geleceği ayırt edebildiğini (çünkü antimadde tepkimeleri, zaman içinde geriye doğru hareket eden madde tepkimelerine denk geliyor) gösteriyor. Yani makroskopik yönde görünen günlük yaşamdan bildiğimiz tersinmezliğe (bir bardağı kırmak,onu kırık parçalarından yeniden oluşturmaktan daha kolaydır) ek olarak bir de atomaltı zaman yönü var.
Antimadde ve Günümüz Teknolojisi
Antimaddenin, günümüz modern teknolojisinde anahtar rolü oynuyor. Tıpta, Pozitron Salma Tomografisi (PET) taramaları, beyin ve kalp fonksiyonlarının saptanmasında kullanılıyor. Hastaya pozitron yayan radyoaktif madde enjekte ediliyor. Pozitrolar, yakındaki elektronlarla biraraya gelince parçacıklar yok oluyor ve bir gama ışını oluşuruyorlar ve bu ışın PET tarayıcısı tarafından algılanıp organların görüntülenmesinde kullanılıyor. Daha büyük ölçekte,fizikçiler her saat milyarlarca antiparçacık oluşturup bunları parçacık hızlandırıcılarındaki deneylerinde kullanıyorlar. En güçlü hızlandırıcılarından biri Cenevre yakınlarındaki Avrupa parçacık fiziği merkezi CERN’de bulunan LEP(Large Electron Positron Collider) elektron ve pozitron demetlerini yeraltında bulunan 27 km uzunluğunda bir halka boyunca birbirine zıt yöndü hızlandırıyor. Her elektron ve pozitron saniyede yaklaşık 11 000 kez halkayı dolanıyor ve birbiriyle çarpışıp yok olunca,ilk enerjileri bir çeşit ağır elektron olan muon gibi yeni parçacıklar oluşturmaya yarıyor. Bu hızlandırıcıdan başka Fermi Ulusal Laboratuvarındaki (Fermilab) Tevatron gibi proton-antiproton çarpıştırıcıları da var.CERN gibi hızlandırıcılarda kullanılan pozitron ve antiproton gibi parçacıkların kendileri de hızlandırıcılarda oluşturuluyor. Eğer bir proton demeti,tipik olarak lityum gibi hafif bir metalden yapılan sabit bir hedefe çarparsa protonlar arası çarpışmalar olur. Eğer çarpışma enerjisi yeterince büyükse,başlangıçtaki kinetik enerjinin bir kısmı yeni parçacıklara dönüşecektir. Korunum yasaları (yük ve lepton sayısı korunum yasaları gibi) madde ve antimaddenin eşit miktarlarda oluşacağını söylüyor.
CERN’deki hızlandırıcıda 1 milyar voltluk gerilim altında,hızlandırılan tek bir yüklü parçacığa aktarılan enerjiye sahip protonlar,sabit bir hedefe çarptırılıyorlar ve antiprotonlar çarpışma kalıntıları arasından toplanıp inceleniyor…Bu çarpışmalarda yaratılan parçacıklar arasında ilginç madde-antimadde melezlerine rastlamak mümkün.Elektron ve pozitron biraraya geldiğinde mutlaka birbirlerini yok etmeleri gerekmiyor. Birisi diğerinin yörüngesine girerek daha çok hidrojene benzeyen ve pozitronyum adı verilen bir pseudo-atom (sözde atom) oluşturabilir. Eğer elektron ve pozitronun spinleri antiparalel (toplam spin sıfır) ise,bu pozitronyumun 8 nanosaniyelik bir ömrü vardır. Eğer spinleri paralel ise (toplam spin 1),7 mikrosaniyeye yakın bir ömrü olur. Aradaki farkın nedeni,spih sıfır durumu bir çift fotona bozunabilirken (her bir spin 1 değerinde),spin-1 durumundaki momentum ve açısal momentumunu korumak için en az 3 fotona bozunmak zorundadır ki bu çeşit bozunmalara daha az rastlanıyor.
Antihidrojen Yapılması
Hidrojen dediğimiz en basit atom, bir proton ve bir elektrondan oluşur. Proton, foton alışverişiyle elektronu yakın çevresinde dans ettirerek tutar(Feynman,Kuantum Elektrodinaliği, s: 104) Birden fazla proton ve bunlara karşılık gelen eşit sayıda elektron içeren atomlar ışığı da saçarlar,havadaki atomlar Güneş’ten gelen ışığı saçarak gökyüzünün mavi rengini verirler.Bir diğer madde-antimadde melezi ise yüksüz pionlardır. Bu, pozitronyuma benzer bir şekilde gama ışınlarına bozunan mezondur(kuark-antikuark çifti) ve bu bozunmanın ömrü 10–15 saniyedir. Bu süre,pozitronyumunkine göre çok daha kısadır,çünkü kuarkları,dört temel kuvvetten biri olan güçlü kuvvetler birarada tutar. Birbirlerine yakın oldukları için kısa bir süre içerisinde birbirlerini yok etme şansları yüksektir.
Antiatomu yaratırken yaşanan sorunlar gözönüne alındığında,madde-antimadde melezlerini yaratmak daha kolay geliyor. Madde dünyası nasıl kararlı elementlerin olmasına izin veriyorsa,antimadde dünyası da anti-periyodik tabloyu(antihidrojen,antihelyum vb) içeriyor. CERN’deki fizikçiler,1996 başlarında az sayıda antihidrojen atomu yaratmayı başardılar. 3 haftalık süre içerisinde 9 antihidrojen atomu oluşturdular ve her biri; maddeyle çarpışıp oluştukları noktanın 10 metre uzağında birbirlerini yoketmeden önce yaklaşık 40 nanosaniye yaşadılar.
Peki bir pozitron antiprotonun yörüngesine nasıl sokulabilir? CERN’de kullanılan yöntem ilke olarak basit. Önce proton-proton çarpışmasından arta kalan artıklardan antiprotonlar elde edilyor. Daha sonra bunlar,yüksek hızda dolanması için çembersel hızlandırıcılara gönderiliyor. Her yörüngede bir (saniyede 3 milyon kere) demet ksenon gazından geçiriliyor.Antiproton enerjisinin bir kısmı elektron-pozitron çiftine dönüşüyor ve çok nadiren pozitronlardan biri antiproton hızında ışın demetinin yönünde oradan uzaklaşıyor. Bu pozitronlardan biri herhangibir antiproton tarafından yakalanırsa bir anti hidrojen atomu oluşuyor.
Fermilab’daki araştırmacılar da artık antihidrojen atomu üretiyorlar ve 1997 sonuna kadar bikaç yüz tane oluşturmayı umut ediyorlar.
Bize yakın galaksilerde çok az antimadde olduğu görünüyor. Hızlandırıcılarda ve yüksek kozmik ışınlarla yaratılan antimadde parçacıkları dışında evren sanki yalnızca maddeden oluşuyor.Acaba bizim gözleyemediğimiz antimadde galaksileri var mı? 15 milyar yıl önceki büyük patlama sırasında madde ve antimadde oranı neydi? Antiatomlar “yukarıya” mı düşer kendi kütleçekim alanına göre? Bunlar,bilim adamlarının üzerinde çalıştığı kimi sorular.